cross_entropy_op.cc 6.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cross_entropy_op.h"

namespace paddle {
namespace operators {

20
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
Q
Qiao Longfei 已提交
25 26 27 28
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
29

Q
Qiao Longfei 已提交
30 31 32 33 34
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
C
caoying03 已提交
35
                      "The 1st dimension of Input(X) and Input(Label) should "
36
                      "be equal.");
Q
Qiao Longfei 已提交
37 38
    if (ctx->Attrs().Get<bool>("softLabel")) {
      PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
C
caoying03 已提交
39
                        "If Attr(softLabel) == true, the 2nd dimension of "
C
caoying03 已提交
40
                        "Input(X) and Input(Label) should be equal.");
41
    } else {
Q
Qiao Longfei 已提交
42
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
C
caoying03 已提交
43
                        "If Attr(softLabel) == false, the 2nd dimension of "
C
caoying03 已提交
44
                        "Input(Label) should be 1.");
45
    }
46

Q
Qiao Longfei 已提交
47 48
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
Q
Qiao Longfei 已提交
49 50 51
  }
};

52
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
53 54 55
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Y
Yan Chunwei 已提交
56
 protected:
Q
Qiao Longfei 已提交
57 58 59 60 61 62 63
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");
64

Q
Qiao Longfei 已提交
65 66 67 68 69 70 71
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
C
caoying03 已提交
72
                      "The 1st dimension of Input(X) and Input(Label) should "
73
                      "be equal.");
Q
Qiao Longfei 已提交
74
    PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
C
caoying03 已提交
75
                      "The 1st dimension of Input(X) and Input(Y@Grad) should "
76
                      "be equal.");
Q
Qiao Longfei 已提交
77
    PADDLE_ENFORCE_EQ(dy_dims[1], 1,
C
caoying03 已提交
78
                      "The 2nd dimension of Input(Y@Grad) should be 1.");
Q
Qiao Longfei 已提交
79 80
    if (ctx->Attrs().Get<bool>("softLabel")) {
      PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
C
caoying03 已提交
81
                        "When Attr(softLabel) == true, the 2nd dimension of "
C
caoying03 已提交
82
                        "Input(X) and Input(Label) should be equal.");
83
    } else {
Q
Qiao Longfei 已提交
84
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
C
caoying03 已提交
85
                        "When Attr(softLabel) == false, the 2nd dimension of "
C
caoying03 已提交
86
                        "Input(Label) should be 1.");
87
    }
Q
Qiao Longfei 已提交
88
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
Y
Yan Chunwei 已提交
89 90 91
  }
};

92
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
93
 public:
Q
Qiao Longfei 已提交
94 95
  CrossEntropyOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
96
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
97 98 99 100 101
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
             "where N is the batch size and D is the number of classes. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
C
caoying03 已提交
102 103 104 105 106 107 108 109
    AddInput(
        "Label",
        "(Tensor, default Tensor<int>), the ground truth which is "
        "a 2-D tensor. "
        "When softLabel is set to false, `Label` is a Tensor<int> with shape "
        "[N x 1]. "
        "When softLabel is set to true, `Label` is a Tensor<float/double> "
        "with shape [N x K].");
C
caoying03 已提交
110
    AddOutput("Y",
C
caoying03 已提交
111
              "(Tensor, default Tensor<float>), a 2-D tensor "
C
caoying03 已提交
112 113
              "with shape [N x 1]. The cross entropy loss.");
    AddAttr<bool>(
C
caoying03 已提交
114
        "softLabel",
C
caoying03 已提交
115 116
        "(bool, default false), a flag to indicate whether to interpretate "
        "the given labels as soft labels.")
117
        .SetDefault(false);
Q
Qiao Longfei 已提交
118
    AddComment(R"DOC(
119
CrossEntropy Operator.
Q
Qiao Longfei 已提交
120

121 122 123
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
C
caoying03 已提交
124
    softLabel = false, Label[i, 0] indicates the class index for sample i:
125

126
                Y[i] = -log(X[i, Label[i]])
Q
Qiao Longfei 已提交
127

128
2) Soft-label cross-entropy:
C
caoying03 已提交
129
    softLabel = true, Label[i, j] indicates the soft label of class j
130
    for sample i:
131

132
                Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
133

134
   Please make sure that in this case the summuation of each row of Label
135 136 137 138 139 140
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
141 142 143

Both the input `X` and `Label` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
Q
Qiao Longfei 已提交
144 145 146 147 148 149
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
150
namespace ops = paddle::operators;
151 152 153 154 155
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
            cross_entropy_grad, ops::CrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
                       ops::CrossEntropyGradientOpKernel<float>);