detection_map_op.cc 8.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
wanghaox 已提交
15
#include "paddle/fluid/operators/detection_map_op.h"
16
#include <string>
W
wanghaox 已提交
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class DetectionMAPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
W
wanghaox 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("DetectRes"),
                   "Input(DetectRes) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
30 31
    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
32 33 34 35 36 37 38 39 40
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumPosCount"),
        "Output(AccumPosCount) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumTruePos"),
        "Output(AccumTruePos) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumFalsePos"),
        "Output(AccumFalsePos) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
41 42 43
    PADDLE_ENFORCE(ctx->HasOutput("MAP"),
                   "Output(MAP) of DetectionMAPOp should not be null.");

W
wanghaox 已提交
44
    auto det_dims = ctx->GetInputDim("DetectRes");
W
wanghaox 已提交
45
    PADDLE_ENFORCE_EQ(det_dims.size(), 2UL,
W
wanghaox 已提交
46
                      "The rank of Input(DetectRes) must be 2, "
W
wanghaox 已提交
47 48
                      "the shape is [N, 6].");
    PADDLE_ENFORCE_EQ(det_dims[1], 6UL,
W
wanghaox 已提交
49
                      "The shape is of Input(DetectRes) [N, 6].");
W
wanghaox 已提交
50
    auto label_dims = ctx->GetInputDim("Label");
51
    PADDLE_ENFORCE_EQ(label_dims.size(), 2,
W
wanghaox 已提交
52 53
                      "The rank of Input(Label) must be 2, "
                      "the shape is [N, 6].");
54 55
    PADDLE_ENFORCE(label_dims[1] == 6 || label_dims[1] == 5,
                   "The shape of Input(Label) is [N, 6] or [N, 5].");
W
wanghaox 已提交
56

W
wanghaox 已提交
57 58 59 60 61 62 63 64 65 66 67
    if (ctx->HasInput("PosCount")) {
      PADDLE_ENFORCE(ctx->HasInput("TruePos"),
                     "Input(TruePos) of DetectionMAPOp should not be null when "
                     "Input(TruePos) is not null.");
      PADDLE_ENFORCE(
          ctx->HasInput("FalsePos"),
          "Input(FalsePos) of DetectionMAPOp should not be null when "
          "Input(FalsePos) is not null.");
    }

    ctx->SetOutputDim("MAP", framework::make_ddim({1}));
W
wanghaox 已提交
68 69 70
  }

 protected:
W
wanghaox 已提交
71
  framework::OpKernelType GetExpectedKernelType(
W
wanghaox 已提交
72 73
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
W
wanghaox 已提交
74
        framework::ToDataType(
W
wanghaox 已提交
75
            ctx.Input<framework::Tensor>("DetectRes")->type()),
76
        platform::CPUPlace());
W
wanghaox 已提交
77 78 79 80 81
  }
};

class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
82
  void Make() override {
W
wanghaox 已提交
83 84 85 86 87 88 89 90
    AddInput("DetectRes",
             "(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the "
             "detections. Each row has 6 values: "
             "[label, confidence, xmin, ymin, xmax, ymax], M is the total "
             "number of detect results in this mini-batch. For each instance, "
             "the offsets in first dimension are called LoD, the number of "
             "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
             "no detected data.");
W
wanghaox 已提交
91
    AddInput("Label",
92
             "(LoDTensor) A 2-D LoDTensor represents the"
W
wanghaox 已提交
93
             "Labeled ground-truth data. Each row has 6 values: "
94 95
             "[label, xmin, ymin, xmax, ymax, is_difficult] or 5 values: "
             "[label, xmin, ymin, xmax, ymax], where N is the total "
W
wanghaox 已提交
96 97 98 99
             "number of ground-truth data in this mini-batch. For each "
             "instance, the offsets in first dimension are called LoD, "
             "the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, "
             "means there is no ground-truth data.");
100 101 102 103
    AddInput("HasState",
             "(Tensor<int>) A tensor with shape [1], 0 means ignoring input "
             "states, which including PosCount, TruePos, FalsePos.")
        .AsDispensable();
W
wanghaox 已提交
104 105
    AddInput("PosCount",
             "(Tensor) A tensor with shape [Ncls, 1], store the "
W
wanghaox 已提交
106 107 108 109 110 111 112 113
             "input positive example count of each class, Ncls is the count of "
             "input classification. "
             "This input is used to pass the AccumPosCount generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. "
             "When the input(PosCount) is empty, the cumulative "
             "calculation is not carried out, and only the results of the "
             "current mini-batch are calculated.")
W
wanghaox 已提交
114 115
        .AsDispensable();
    AddInput("TruePos",
W
wanghaox 已提交
116 117 118 119 120
             "(LoDTensor) A 2-D LoDTensor with shape [Ntp, 2], store the "
             "input true positive example of each class."
             "This input is used to pass the AccumTruePos generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. ")
W
wanghaox 已提交
121 122
        .AsDispensable();
    AddInput("FalsePos",
W
wanghaox 已提交
123 124 125 126 127
             "(LoDTensor) A 2-D LoDTensor with shape [Nfp, 2], store the "
             "input false positive example of each class."
             "This input is used to pass the AccumFalsePos generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. ")
W
wanghaox 已提交
128
        .AsDispensable();
W
wanghaox 已提交
129
    AddOutput("AccumPosCount",
W
wanghaox 已提交
130 131 132 133
              "(Tensor) A tensor with shape [Ncls, 1], store the "
              "positive example count of each class. It combines the input "
              "input(PosCount) and the positive example count computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
134 135
    AddOutput("AccumTruePos",
              "(LoDTensor) A LoDTensor with shape [Ntp', 2], store the "
W
wanghaox 已提交
136 137 138
              "true positive example of each class. It combines the "
              "input(TruePos) and the true positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
139 140
    AddOutput("AccumFalsePos",
              "(LoDTensor) A LoDTensor with shape [Nfp', 2], store the "
W
wanghaox 已提交
141 142 143
              "false positive example of each class. It combines the "
              "input(FalsePos) and the false positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
144 145 146
    AddOutput("MAP",
              "(Tensor) A tensor with shape [1], store the mAP evaluate "
              "result of the detection.");
147 148 149 150 151 152 153 154 155
    AddAttr<int>("class_num",
                 "(int) "
                 "The class number.");
    AddAttr<int>(
        "background_label",
        "(int, defalut: 0) "
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
        .SetDefault(0);
W
wanghaox 已提交
156 157 158 159 160
    AddAttr<float>(
        "overlap_threshold",
        "(float) "
        "The lower bound jaccard overlap threshold of detection output and "
        "ground-truth data.")
161
        .SetDefault(.5f);
W
wanghaox 已提交
162
    AddAttr<bool>("evaluate_difficult",
W
wanghaox 已提交
163
                  "(bool, default true) "
W
wanghaox 已提交
164 165 166
                  "Switch to control whether the difficult data is evaluated.")
        .SetDefault(true);
    AddAttr<std::string>("ap_type",
W
wanghaox 已提交
167 168 169
                         "(string, default 'integral') "
                         "The AP algorithm type, 'integral' or '11point'.")
        .SetDefault("integral")
W
wanghaox 已提交
170 171 172 173 174
        .InEnum({"integral", "11point"})
        .AddCustomChecker([](const std::string& ap_type) {
          PADDLE_ENFORCE_NE(GetAPType(ap_type), APType::kNone,
                            "The ap_type should be 'integral' or '11point.");
        });
W
wanghaox 已提交
175
    AddComment(R"DOC(
W
wanghaox 已提交
176 177 178 179 180 181 182 183
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
 false positive according to the input of detection and labels, then
 calculate the mAP evaluate value.
 Supporting '11 point' and 'integral' mAP algorithm. Please get more information
 from the following articles:
 https://sanchom.wordpress.com/tag/average-precision/
 https://arxiv.org/abs/1512.02325
W
wanghaox 已提交
184 185 186 187 188 189 190 191 192

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
193 194
REGISTER_OPERATOR(detection_map, ops::DetectionMAPOp, ops::DetectionMAPOpMaker,
                  paddle::framework::EmptyGradOpMaker);
W
wanghaox 已提交
195
REGISTER_OP_CPU_KERNEL(
W
wanghaox 已提交
196 197
    detection_map, ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, float>,
    ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, double>);