detection_map_op.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
wanghaox 已提交
15
#include "paddle/fluid/operators/detection_map_op.h"
W
wanghaox 已提交
16 17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class DetectionMAPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
W
wanghaox 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("DetectRes"),
                   "Input(DetectRes) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
31 32 33 34 35 36 37 38 39
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumPosCount"),
        "Output(AccumPosCount) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumTruePos"),
        "Output(AccumTruePos) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AccumFalsePos"),
        "Output(AccumFalsePos) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
40 41 42
    PADDLE_ENFORCE(ctx->HasOutput("MAP"),
                   "Output(MAP) of DetectionMAPOp should not be null.");

W
wanghaox 已提交
43
    auto det_dims = ctx->GetInputDim("DetectRes");
W
wanghaox 已提交
44
    PADDLE_ENFORCE_EQ(det_dims.size(), 2UL,
W
wanghaox 已提交
45
                      "The rank of Input(DetectRes) must be 2, "
W
wanghaox 已提交
46 47
                      "the shape is [N, 6].");
    PADDLE_ENFORCE_EQ(det_dims[1], 6UL,
W
wanghaox 已提交
48
                      "The shape is of Input(DetectRes) [N, 6].");
W
wanghaox 已提交
49
    auto label_dims = ctx->GetInputDim("Label");
50
    PADDLE_ENFORCE_EQ(label_dims.size(), 2,
W
wanghaox 已提交
51 52
                      "The rank of Input(Label) must be 2, "
                      "the shape is [N, 6].");
53
    PADDLE_ENFORCE_EQ(label_dims[1], 6, "The shape is of Input(Label) [N, 6].");
W
wanghaox 已提交
54

W
wanghaox 已提交
55 56 57 58 59 60 61 62 63 64 65
    if (ctx->HasInput("PosCount")) {
      PADDLE_ENFORCE(ctx->HasInput("TruePos"),
                     "Input(TruePos) of DetectionMAPOp should not be null when "
                     "Input(TruePos) is not null.");
      PADDLE_ENFORCE(
          ctx->HasInput("FalsePos"),
          "Input(FalsePos) of DetectionMAPOp should not be null when "
          "Input(FalsePos) is not null.");
    }

    ctx->SetOutputDim("MAP", framework::make_ddim({1}));
W
wanghaox 已提交
66 67 68
  }

 protected:
W
wanghaox 已提交
69
  framework::OpKernelType GetExpectedKernelType(
W
wanghaox 已提交
70 71
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
W
wanghaox 已提交
72
        framework::ToDataType(
W
wanghaox 已提交
73
            ctx.Input<framework::Tensor>("DetectRes")->type()),
W
wanghaox 已提交
74 75 76 77 78 79
        ctx.device_context());
  }
};

class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
wanghaox 已提交
80
  DetectionMAPOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaox 已提交
81
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaox 已提交
82 83 84 85 86 87 88 89
    AddInput("DetectRes",
             "(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the "
             "detections. Each row has 6 values: "
             "[label, confidence, xmin, ymin, xmax, ymax], M is the total "
             "number of detect results in this mini-batch. For each instance, "
             "the offsets in first dimension are called LoD, the number of "
             "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
             "no detected data.");
W
wanghaox 已提交
90 91 92 93 94 95 96 97
    AddInput("Label",
             "(LoDTensor) A 2-D LoDTensor with shape[N, 6] represents the"
             "Labeled ground-truth data. Each row has 6 values: "
             "[label, is_difficult, xmin, ymin, xmax, ymax], N is the total "
             "number of ground-truth data in this mini-batch. For each "
             "instance, the offsets in first dimension are called LoD, "
             "the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, "
             "means there is no ground-truth data.");
98 99 100 101
    AddInput("HasState",
             "(Tensor<int>) A tensor with shape [1], 0 means ignoring input "
             "states, which including PosCount, TruePos, FalsePos.")
        .AsDispensable();
W
wanghaox 已提交
102 103
    AddInput("PosCount",
             "(Tensor) A tensor with shape [Ncls, 1], store the "
W
wanghaox 已提交
104 105 106 107 108 109 110 111
             "input positive example count of each class, Ncls is the count of "
             "input classification. "
             "This input is used to pass the AccumPosCount generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. "
             "When the input(PosCount) is empty, the cumulative "
             "calculation is not carried out, and only the results of the "
             "current mini-batch are calculated.")
W
wanghaox 已提交
112 113
        .AsDispensable();
    AddInput("TruePos",
W
wanghaox 已提交
114 115 116 117 118
             "(LoDTensor) A 2-D LoDTensor with shape [Ntp, 2], store the "
             "input true positive example of each class."
             "This input is used to pass the AccumTruePos generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. ")
W
wanghaox 已提交
119 120
        .AsDispensable();
    AddInput("FalsePos",
W
wanghaox 已提交
121 122 123 124 125
             "(LoDTensor) A 2-D LoDTensor with shape [Nfp, 2], store the "
             "input false positive example of each class."
             "This input is used to pass the AccumFalsePos generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. ")
W
wanghaox 已提交
126
        .AsDispensable();
W
wanghaox 已提交
127
    AddOutput("AccumPosCount",
W
wanghaox 已提交
128 129 130 131
              "(Tensor) A tensor with shape [Ncls, 1], store the "
              "positive example count of each class. It combines the input "
              "input(PosCount) and the positive example count computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
132 133
    AddOutput("AccumTruePos",
              "(LoDTensor) A LoDTensor with shape [Ntp', 2], store the "
W
wanghaox 已提交
134 135 136
              "true positive example of each class. It combines the "
              "input(TruePos) and the true positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
137 138
    AddOutput("AccumFalsePos",
              "(LoDTensor) A LoDTensor with shape [Nfp', 2], store the "
W
wanghaox 已提交
139 140 141
              "false positive example of each class. It combines the "
              "input(FalsePos) and the false positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
142 143 144 145
    AddOutput("MAP",
              "(Tensor) A tensor with shape [1], store the mAP evaluate "
              "result of the detection.");

W
wanghaox 已提交
146 147 148 149 150
    AddAttr<float>(
        "overlap_threshold",
        "(float) "
        "The lower bound jaccard overlap threshold of detection output and "
        "ground-truth data.")
151
        .SetDefault(.5f);
W
wanghaox 已提交
152
    AddAttr<bool>("evaluate_difficult",
W
wanghaox 已提交
153
                  "(bool, default true) "
W
wanghaox 已提交
154 155 156
                  "Switch to control whether the difficult data is evaluated.")
        .SetDefault(true);
    AddAttr<std::string>("ap_type",
W
wanghaox 已提交
157 158 159
                         "(string, default 'integral') "
                         "The AP algorithm type, 'integral' or '11point'.")
        .SetDefault("integral")
W
wanghaox 已提交
160 161 162 163 164
        .InEnum({"integral", "11point"})
        .AddCustomChecker([](const std::string& ap_type) {
          PADDLE_ENFORCE_NE(GetAPType(ap_type), APType::kNone,
                            "The ap_type should be 'integral' or '11point.");
        });
W
wanghaox 已提交
165
    AddComment(R"DOC(
W
wanghaox 已提交
166 167 168 169 170 171 172 173
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
 false positive according to the input of detection and labels, then
 calculate the mAP evaluate value.
 Supporting '11 point' and 'integral' mAP algorithm. Please get more information
 from the following articles:
 https://sanchom.wordpress.com/tag/average-precision/
 https://arxiv.org/abs/1512.02325
W
wanghaox 已提交
174 175 176 177 178 179 180 181 182 183 184 185

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(detection_map, ops::DetectionMAPOp,
                             ops::DetectionMAPOpMaker);
REGISTER_OP_CPU_KERNEL(
W
wanghaox 已提交
186 187
    detection_map, ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, float>,
    ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, double>);