dist_sharding_save.py 3.3 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import os
import pickle
import sys

19
from dist_mnist import cnn_model  # noqa: F401
20 21

import paddle
J
JZ-LIANG 已提交
22
import paddle.distributed.fleet.base.role_maker as role_maker
J
JZ-LIANG 已提交
23
import paddle.distributed.fleet.meta_optimizers.sharding as sharding
24
import paddle.fluid as fluid
J
JZ-LIANG 已提交
25 26 27 28 29

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

J
JZ-LIANG 已提交
30

J
JZ-LIANG 已提交
31 32 33 34 35 36 37 38 39 40
def runtime_main():
    import paddle.distributed.fleet as fleet

    # model definition
    train_prog = paddle.fluid.Program()
    startup_prog = paddle.fluid.Program()
    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
    fleet.init(role)
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
41 42 43 44 45 46
            input_x = paddle.fluid.layers.data(
                name="x", shape=[32], dtype='float32'
            )
            input_y = paddle.fluid.layers.data(
                name="y", shape=[1], dtype='int64'
            )
J
JZ-LIANG 已提交
47

J
JZ-LIANG 已提交
48
            fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
J
JZ-LIANG 已提交
49
            fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
50 51 52 53 54 55
            prediction = paddle.fluid.layers.fc(
                input=[fc_2], size=2, act='softmax'
            )
            cost = paddle.fluid.layers.cross_entropy(
                input=prediction, label=input_y
            )
56
            avg_cost = paddle.mean(x=cost)
J
JZ-LIANG 已提交
57 58 59

            strategy = paddle.distributed.fleet.DistributedStrategy()
            strategy.sharding = True
60 61 62 63 64
            strategy.sharding_configs = {
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 0.2,
                "sharding_degree": 2,
            }
J
JZ-LIANG 已提交
65

66 67 68 69 70 71
            optimizer = paddle.fluid.optimizer.Momentum(
                learning_rate=0.01, momentum=0.9
            )
            optimizer = fleet.distributed_optimizer(
                optimizer, strategy=strategy
            )
J
JZ-LIANG 已提交
72 73 74 75 76 77 78
            optimizer.minimize(avg_cost)

    # execution
    device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
    place = fluid.CUDAPlace(device_id)
    exe = fluid.Executor(place)
    exe.run(startup_prog)
J
JZ-LIANG 已提交
79
    dirname = "./ut_sharding_save_model"
80 81 82
    sharding.utils.save_persistables(
        exe, dirname, main_program=train_prog, filename=None
    )
J
JZ-LIANG 已提交
83

J
JZ-LIANG 已提交
84
    out_losses = []
T
tianshuo78520a 已提交
85
    sys.stdout.buffer.write(pickle.dumps(out_losses))
J
JZ-LIANG 已提交
86

J
JZ-LIANG 已提交
87

J
JZ-LIANG 已提交
88
if __name__ == "__main__":
89
    # NOTE(liangjianzhong): dist unittest should be imlpement using runtime_main in test_dist_base.py
90 91
    # but the runtime_main in test_dist_base.py use the fleet, DistributedStrategy from
    # paddle.fluid.incubate.fleet.collective which is not support by sharding (paddle.distributed.fleet).
J
JZ-LIANG 已提交
92 93 94
    # this should be update in future.
    # runtime_main(TestDistMnist2x2)
    runtime_main()