dist_sharding_save.py 3.3 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
17
from dist_mnist import cnn_model  # noqa: F401
J
JZ-LIANG 已提交
18
import paddle.distributed.fleet.base.role_maker as role_maker
J
JZ-LIANG 已提交
19
import paddle.distributed.fleet.meta_optimizers.sharding as sharding
J
JZ-LIANG 已提交
20 21 22 23 24 25 26 27 28

import os
import sys
import pickle

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

J
JZ-LIANG 已提交
29

J
JZ-LIANG 已提交
30 31 32 33 34 35 36 37 38 39
def runtime_main():
    import paddle.distributed.fleet as fleet

    # model definition
    train_prog = paddle.fluid.Program()
    startup_prog = paddle.fluid.Program()
    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
    fleet.init(role)
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
40 41 42 43 44 45
            input_x = paddle.fluid.layers.data(
                name="x", shape=[32], dtype='float32'
            )
            input_y = paddle.fluid.layers.data(
                name="y", shape=[1], dtype='int64'
            )
J
JZ-LIANG 已提交
46

J
JZ-LIANG 已提交
47
            fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
J
JZ-LIANG 已提交
48
            fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
49 50 51 52 53 54
            prediction = paddle.fluid.layers.fc(
                input=[fc_2], size=2, act='softmax'
            )
            cost = paddle.fluid.layers.cross_entropy(
                input=prediction, label=input_y
            )
55
            avg_cost = paddle.mean(x=cost)
J
JZ-LIANG 已提交
56 57 58

            strategy = paddle.distributed.fleet.DistributedStrategy()
            strategy.sharding = True
59 60 61 62 63
            strategy.sharding_configs = {
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 0.2,
                "sharding_degree": 2,
            }
J
JZ-LIANG 已提交
64

65 66 67 68 69 70
            optimizer = paddle.fluid.optimizer.Momentum(
                learning_rate=0.01, momentum=0.9
            )
            optimizer = fleet.distributed_optimizer(
                optimizer, strategy=strategy
            )
J
JZ-LIANG 已提交
71 72 73 74 75 76 77
            optimizer.minimize(avg_cost)

    # execution
    device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
    place = fluid.CUDAPlace(device_id)
    exe = fluid.Executor(place)
    exe.run(startup_prog)
J
JZ-LIANG 已提交
78
    dirname = "./ut_sharding_save_model"
79 80 81
    sharding.utils.save_persistables(
        exe, dirname, main_program=train_prog, filename=None
    )
J
JZ-LIANG 已提交
82

J
JZ-LIANG 已提交
83
    out_losses = []
T
tianshuo78520a 已提交
84
    sys.stdout.buffer.write(pickle.dumps(out_losses))
J
JZ-LIANG 已提交
85

J
JZ-LIANG 已提交
86

J
JZ-LIANG 已提交
87
if __name__ == "__main__":
88
    # NOTE(liangjianzhong): dist unittest should be imlpement using runtime_main in test_dist_base.py
89 90
    # but the runtime_main in test_dist_base.py use the fleet, DistributedStrategy from
    # paddle.fluid.incubate.fleet.collective which is not support by sharding (paddle.distributed.fleet).
J
JZ-LIANG 已提交
91 92 93
    # this should be update in future.
    # runtime_main(TestDistMnist2x2)
    runtime_main()