op_converter.h 10.0 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <map>
F
flame 已提交
18 19 20 21
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
22
#include <vector>
F
flame 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include "framework/core/types.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "saber/saber_types.h"

namespace paddle {
namespace inference {
namespace anakin {

35
template <typename TargetT, ::anakin::Precision PrecisionT>
F
flame 已提交
36
class AnakinOpConverter {
37
  using AnakinEngineT = AnakinEngine<TargetT, PrecisionT>;
38

F
flame 已提交
39 40 41 42
 public:
  AnakinOpConverter() = default;

  virtual void operator()(const framework::proto::OpDesc &op,
43
                          const framework::BlockDesc &block_desc,
F
flame 已提交
44 45
                          const framework::Scope &scope, bool test_mode) {}
  void ConvertOp(const framework::proto::OpDesc &op,
46
                 const framework::BlockDesc &block_desc,
F
flame 已提交
47
                 const std::unordered_set<std::string> &parameters,
48
                 const framework::Scope &scope, AnakinEngineT *engine,
F
flame 已提交
49 50 51
                 bool test_mode = false) {
    framework::OpDesc op_desc(op, nullptr);
    std::string op_type = op_desc.Type();
52
    AnakinOpConverter *it = nullptr;
N
nhzlx 已提交
53
    if (op_type == "depthwise_conv2d") op_type = "conv2d";
54 55 56 57
    if (op_type == "reshape2") op_type = "reshape";
    if (op_type == "transpose2") op_type = "transpose";
    if (op_type == "flatten2") op_type = "flatten";

F
flame 已提交
58
    if (!it) {
59
      it = Registry<AnakinOpConverter>::Global().Lookup(op_type);
F
flame 已提交
60 61 62
    }
    PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]", op_type);
    it->SetEngine(engine);
63
    (*it)(op, block_desc, scope, test_mode);
F
flame 已提交
64 65
  }

66
  void ConvertBlock(framework::BlockDesc *block_desc,
F
flame 已提交
67
                    const std::unordered_set<std::string> &parameters,
68
                    const framework::Scope &scope, AnakinEngineT *engine) {
F
flame 已提交
69
    std::unique_lock<std::mutex> lock(mutex_);
70 71 72 73
    framework::proto::BlockDesc *block = block_desc->Proto();
    for (auto i = 0; i < block->ops_size(); i++) {
      auto &op = block->ops(i);
      ConvertOp(op, *block_desc, parameters, scope, engine);
F
flame 已提交
74 75
    }
  }
76 77 78

  // The scope  here should be inited with the parameter vars.
  void ConvertBlockToAnakinEngine(
79
      framework::BlockDesc *block_desc, framework::Scope *scope,
80 81
      const std::vector<std::string> &inputs,
      const std::unordered_set<std::string> &parameters,
82
      const std::vector<std::string> &outputs, AnakinEngineT *engine) {
83
    ConvertBlock(block_desc, parameters, *scope, engine);
84 85 86 87 88 89 90 91 92
    // if the max_batch size
    int max_batch_size = engine->GetMaxBatchSize();
    PADDLE_ENFORCE(max_batch_size > 0,
                   "the max_batch_size setted from config->EnableAnakinEngine "
                   "must largger than 0");
    // If the user does not specify this variable, we use the input shape from
    // the block_desc.
    auto max_input_shape = engine->GetMaxInputShape();
    std::map<std::string, std::vector<int>> temp_max_input_shape;
93 94 95 96 97 98
    // Register outputs with anakin using the RegistVar interface before Freeze.
    // Note that RegistVar's parameters can only be outputs, not inputs.
    for (auto &output : outputs) {
      engine->Graph()->RegistVar(output);
    }
    engine->Freeze();
99 100 101 102 103 104 105
    // Add scale for tensor in int8 mode.
    auto tensor_scales = engine->GetTensorScales();

    for (auto &item : tensor_scales) {
      engine->Graph()->SetVarScale(item.first, item.second);
    }

106 107 108
    for (auto &input : inputs) {
      if (parameters.count(input)) continue;
      std::vector<int> input_shape;
109 110 111 112
      input_shape.resize(4);
      input_shape[0] = max_batch_size;
      if (max_input_shape.count(input)) {
        PADDLE_ENFORCE(max_input_shape[input].size() == 4,
113
                       "the dimensions of max_input_shape setted from "
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                       "config->EnableAnakinEngine must be 4");
        for (int i = 1; i < 4; i++) {
          input_shape[i] = max_input_shape[input][i];
        }
      } else {
        auto *var = block_desc->FindVar(input);
        PADDLE_ENFORCE(var, "no variable called %s", input);

        auto var_shape = var->GetShape();
        std::cout << "input :" << input << std::endl;
        PADDLE_ENFORCE(var_shape.size() == 4);

        for (size_t i = 1; i < var_shape.size(); i++) {
          input_shape[i] = var_shape[i];
        }
129
      }
130
      temp_max_input_shape[input] = input_shape;
131 132
      engine->SetInputShape(input, input_shape);
    }
133
    engine->SetMaxInputShape(temp_max_input_shape);
134
    engine->Optimize();
135
    engine->InitNet();
136 137
  }

138
  void SetEngine(AnakinEngineT *engine) { engine_ = engine; }
F
flame 已提交
139 140 141 142
  virtual ~AnakinOpConverter() {}

 protected:
  bool test_mode_;
143
  AnakinEngineT *engine_{nullptr};
F
flame 已提交
144 145

 private:
146 147
  std::unordered_map<std::string, AnakinOpConverter<TargetT, PrecisionT> *>
      converters_;
F
flame 已提交
148 149 150 151
  framework::Scope *scope_{nullptr};
  std::mutex mutex_;
};

152 153 154 155 156 157 158 159 160
template class AnakinOpConverter<::anakin::saber::NV,
                                 ::anakin::Precision::FP32>;
template class AnakinOpConverter<::anakin::saber::NV,
                                 ::anakin::Precision::INT8>;

template class AnakinOpConverter<::anakin::saber::X86,
                                 ::anakin::Precision::FP32>;
template class AnakinOpConverter<::anakin::saber::X86,
                                 ::anakin::Precision::INT8>;
F
flame 已提交
161 162 163 164
}  // namespace anakin
}  // namespace inference
}  // namespace paddle

165
#define REGISTER_ANAKIN_OP_CONVERTER_BASE(op_type__, Converter__,              \
166 167 168
                                          place_type__, place_class__,         \
                                          precision_type__, precision_class__) \
  struct anakin_##op_type__##_##place_type__##_##precision_type__##_converter  \
169
      : public ::paddle::framework::Registrar {                                \
170
    anakin_##op_type__##_##place_type__##_##precision_type__##_converter() {   \
171 172
      LOG(INFO) << "register convert " << #op_type__ << " ";                   \
      ::paddle::inference::Registry<                                           \
173 174 175
          ::paddle::inference::anakin::AnakinOpConverter<                      \
              place_class__, precision_class__>>::Global()                     \
          .Register<Converter__>(#op_type__);                                  \
176 177
    }                                                                          \
  };                                                                           \
178 179 180 181 182
  anakin_##op_type__##_##place_type__##_##precision_type__##_converter         \
      anakin_##op_type__##_##place_type__##_##precision_type__##_converter__;  \
  int Touch_anakin_##op_type__##_##place_type__##_##precision_type__() {       \
    anakin_##op_type__##_##place_type__##_##precision_type__##_converter__     \
        .Touch();                                                              \
183
    return 0;                                                                  \
F
flame 已提交
184 185
  }

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#define WRAP(...) __VA_ARGS__

#define REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__,       \
                                          precision_type__)             \
  REGISTER_ANAKIN_OP_CONVERTER_BASE(                                    \
      op_type__,                                                        \
      ::paddle::inference::anakin::Converter__<WRAP(                    \
          ::anakin::saber::NV, ::anakin::Precision::precision_type__)>, \
      CUDA, ::anakin::saber::NV, precision_type__,                      \
      ::anakin::Precision::precision_type__)

#define REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__,         \
                                         precision_type__)               \
  REGISTER_ANAKIN_OP_CONVERTER_BASE(                                     \
      op_type__,                                                         \
      ::paddle::inference::anakin::Converter__<WRAP(                     \
          ::anakin::saber::X86, ::anakin::Precision::precision_type__)>, \
      CPU, ::anakin::saber::X86, precision_type__,                       \
      ::anakin::Precision::precision_type__)

#ifdef PADDLE_WITH_CUDA
#define REGISTER_ANAKIN_OP_CONVERTER(op_type__, Converter__)       \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8); \
  REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32);  \
  REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8)
#else
#define REGISTER_ANAKIN_OP_CONVERTER(op_type__, Converter__)      \
  REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \
  REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8)
#endif
217

218 219 220 221 222
#define USE_ANAKIN_CONVERTER_BASE(op_type__, place_type__, precision_type__)   \
  extern int Touch_anakin_##op_type__##_##place_type__##_##precision_type__(); \
  int use_converter_anakin_##op_type__##_##place_type__##_##precision_type__   \
      __attribute__((unused)) =                                                \
          Touch_anakin_##op_type__##_##place_type__##_##precision_type__();
223 224

#define USE_ANAKIN_CONVERTER(op_type__) \
225 226 227
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, FP32)
#define USE_INT8_ANAKIN_CONVERTER(op_type__) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, INT8)
228 229

#define USE_CPU_ANAKIN_CONVERTER(op_type__) \
230 231 232
  USE_ANAKIN_CONVERTER_BASE(op_type__, CPU, FP32)
#define USE_CPU_INT8_ANAKIN_CONVERTER(op_type__) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CPU, INT8)