bfgs.py 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from .line_search import strong_wolfe
from .utils import _value_and_gradient, check_input_type, check_initial_inverse_hessian_estimate

import paddle


def minimize_bfgs(objective_func,
                  initial_position,
                  max_iters=50,
                  tolerance_grad=1e-7,
                  tolerance_change=1e-9,
                  initial_inverse_hessian_estimate=None,
                  line_search_fn='strong_wolfe',
                  max_line_search_iters=50,
                  initial_step_length=1.0,
                  dtype='float32',
                  name=None):
    r"""
    Minimizes a differentiable function `func` using the BFGS method.
S
Sing_chan 已提交
36 37 38
    The BFGS is a quasi-Newton method for solving an unconstrained optimization problem over a differentiable function.
    Closely related is the Newton method for minimization. Consider the iterate update formula:

39
    .. math::
S
Sing_chan 已提交
40 41 42 43
        x_{k+1} = x_{k} + H_k \nabla{f_k}

    If :math:`H_k` is the inverse Hessian of :math:`f` at :math:`x_k`, then it's the Newton method.
    If :math:`H_k` is symmetric and positive definite, used as an approximation of the inverse Hessian, then 
44 45
    it's a quasi-Newton. In practice, the approximated Hessians are obtained
    by only using the gradients, over either whole or part of the search 
S
Sing_chan 已提交
46
    history, the former is BFGS, the latter is L-BFGS.
47

S
Sing_chan 已提交
48 49
    Reference: 
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006. pp140: Algorithm 6.1 (BFGS Method).
50 51

    Args:
S
Sing_chan 已提交
52 53 54 55 56 57 58 59 60 61 62 63
        objective_func: the objective function to minimize. ``objective_func`` accepts a multivariate input and returns a scalar.
        initial_position (Tensor): the starting point of the iterates. 
        max_iters (int, optional): the maximum number of minimization iterations. Default value: 50.
        tolerance_grad (float, optional): terminates if the gradient norm is smaller than this. Currently gradient norm uses inf norm. Default value: 1e-7.
        tolerance_change (float, optional): terminates if the change of function value/position/parameter between two iterations is smaller than this value. Default value: 1e-9.
        initial_inverse_hessian_estimate (Tensor, optional): the initial inverse hessian approximation at initial_position. It must be symmetric and positive definite. Default value: None.
        line_search_fn (str, optional): indicate which line search method to use, only support 'strong wolfe' right now. May support 'Hager Zhang' in the futrue. Default value: 'strong wolfe'.
        max_line_search_iters (int, optional): the maximum number of line search iterations. Default value: 50.
        initial_step_length (float, optional): step length used in first iteration of line search. different initial_step_length may cause different optimal result. For methods like Newton and quasi-Newton the initial trial step length should always be 1.0. Default value: 1.0.
        dtype ('float32' | 'float64', optional): data type used in the algorithm. Default value: 'float32'.
        name (str, optional): Name for the operation. For more information, please refer to :ref:`api_guide_Name`. Default value: None.

64
    Returns:
S
Sing_chan 已提交
65 66 67 68 69 70 71 72
        output(tuple):

            - is_converge (bool): Indicates whether found the minimum within tolerance.
            - num_func_calls (int): number of objective function called.
            - position (Tensor): the position of the last iteration. If the search converged, this value is the argmin of the objective function regrading to the initial position.
            - objective_value (Tensor): objective function value at the `position`.
            - objective_gradient (Tensor): objective function gradient at the `position`.
            - inverse_hessian_estimate (Tensor): the estimate of inverse hessian at the `position`.
73 74 75 76 77 78 79 80 81 82

    Examples:
        .. code-block:: python

            import paddle
            
            def func(x):
                return paddle.dot(x, x)

            x0 = paddle.to_tensor([1.3, 2.7])
83
            results = paddle.incubate.optimizer.functional.minimize_bfgs(func, x0)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            print("is_converge: ", results[0])
            print("the minimum of func is: ", results[2])
            # is_converge:  is_converge:  Tensor(shape=[1], dtype=bool, place=Place(gpu:0), stop_gradient=True,
            #        [True])
            # the minimum of func is:  Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0., 0.])
    """

    if dtype not in ['float32', 'float64']:
        raise ValueError(
            "The dtype must be 'float32' or 'float64', but the specified is {}.".
            format(dtype))

    op_name = 'minimize_bfgs'
    check_input_type(initial_position, 'initial_position', op_name)

    I = paddle.eye(initial_position.shape[0], dtype=dtype)
    if initial_inverse_hessian_estimate is None:
        initial_inverse_hessian_estimate = I
    else:
        check_input_type(initial_inverse_hessian_estimate,
                         'initial_inverse_hessian_estimate', op_name)
        check_initial_inverse_hessian_estimate(initial_inverse_hessian_estimate)

    Hk = paddle.assign(initial_inverse_hessian_estimate)
109 110
    # use detach and assign to create new tensor rather than =, or xk will share memory and grad with initial_position
    xk = paddle.assign(initial_position.detach())
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    value, g1 = _value_and_gradient(objective_func, xk)
    num_func_calls = paddle.full(shape=[1], fill_value=1, dtype='int64')

    # when the dim of x is 1000, it needs more than 30 iters to get all element converge to minimum.
    k = paddle.full(shape=[1], fill_value=0, dtype='int64')
    done = paddle.full(shape=[1], fill_value=False, dtype='bool')
    is_converge = paddle.full(shape=[1], fill_value=False, dtype='bool')

    def cond(k, done, is_converge, num_func_calls, xk, value, g1, Hk):
        return (k < max_iters) & ~done

    def body(k, done, is_converge, num_func_calls, xk, value, g1, Hk):
        #############    compute pk    #############
        pk = -paddle.matmul(Hk, g1)

        #############    compute alpha by line serach    #############
        if line_search_fn == 'strong_wolfe':
            alpha, value, g2, ls_func_calls = strong_wolfe(
                f=objective_func,
                xk=xk,
                pk=pk,
                initial_step_length=initial_step_length,
                dtype=dtype)
        else:
            raise NotImplementedError(
                "Currently only support line_search_fn = 'strong_wolfe', but the specified is '{}'".
                format(line_search_fn))
        num_func_calls += ls_func_calls

        #############    update Hk    #############
        sk = alpha * pk
        yk = g2 - g1

        xk = xk + sk
        g1 = g2

        sk = paddle.unsqueeze(sk, 0)
        yk = paddle.unsqueeze(yk, 0)

        rhok_inv = paddle.dot(yk, sk)
        rhok = paddle.static.nn.cond(
            rhok_inv == 0., lambda: paddle.full(shape=[1], fill_value=1000.0, dtype=dtype), lambda: 1. / rhok_inv)

        Vk_transpose = I - rhok * sk * yk.t()
        Vk = I - rhok * yk * sk.t()
        Hk = paddle.matmul(paddle.matmul(Vk_transpose, Hk),
                           Vk) + rhok * sk * sk.t()

        k += 1

        #############    check convergence    #############
        gnorm = paddle.linalg.norm(g1, p=np.inf)
        pk_norm = paddle.linalg.norm(pk, p=np.inf)
        paddle.assign(done | (gnorm < tolerance_grad) |
                      (pk_norm < tolerance_change), done)
        paddle.assign(done, is_converge)
        # when alpha=0, there is no chance to get xk change.
        paddle.assign(done | (alpha == 0.), done)
        return [k, done, is_converge, num_func_calls, xk, value, g1, Hk]

    paddle.static.nn.while_loop(
        cond=cond,
        body=body,
        loop_vars=[k, done, is_converge, num_func_calls, xk, value, g1, Hk])
    return is_converge, num_func_calls, xk, value, g1, Hk