bfgs.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from .line_search import strong_wolfe
from .utils import _value_and_gradient, check_input_type, check_initial_inverse_hessian_estimate

import paddle


def minimize_bfgs(objective_func,
                  initial_position,
                  max_iters=50,
                  tolerance_grad=1e-7,
                  tolerance_change=1e-9,
                  initial_inverse_hessian_estimate=None,
                  line_search_fn='strong_wolfe',
                  max_line_search_iters=50,
                  initial_step_length=1.0,
                  dtype='float32',
                  name=None):
    r"""
    Minimizes a differentiable function `func` using the BFGS method.
    The BFGS is a quasi-Newton method for solving an unconstrained
    optimization problem over a differentiable function.
    Closely related is the Newton method for minimization. Consider the iterate 
    update formula
    .. math::
        x_{k+1} = x_{k} + H \nabla{f},
    If $H$ is the inverse Hessian of $f$ at $x_{k}$, then it's the Newton method.
    If $H$ is symmetric and positive definite, used as an approximation of the inverse Hessian, then 
    it's a quasi-Newton. In practice, the approximated Hessians are obtained
    by only using the gradients, over either whole or part of the search 
    history, the former is BFGS.

    Reference:
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006.
        pp140: Algorithm 6.1 (BFGS Method).
    
    Following summarizes the the main logic of the program based on BFGS. Note: _k represents value of
    k_th iteration, ^T represents the transposition of a vector or matrix.
    repeat
        p_k = H_k * g_k
        alpha = strong_wolfe(f, x_k, p_k)
        x_k+1 = x_k + alpha * p_k
        s_k = x_k+1 - x_k
        y_k = g_k+1 - g_k
        rho_k = 1 / (s_k^T * y_k)
        V_k^T = I - rho_k * s_k * y_k^T
        V_k = I - rho_k * y_k * s_k^T
        H_k+1 = V_k^T * H_k * V_k + rho_k * s_k * s_k^T
        check_converge
    end 

    Args:
        objective_func: the objective function to minimize. ``func`` accepts
            a multivariate input and returns a scalar.
        initial_position (Tensor): the starting point of the iterates. For methods like Newton and quasi-Newton 
        the initial trial step length should always be 1.0.
        max_iters (int): the maximum number of minimization iterations.
        tolerance_grad (float): terminates if the gradient norm is smaller than this. Currently gradient norm uses inf norm.
        tolerance_change (float): terminates if the change of function value/position/parameter between 
            two iterations is smaller than this value.
        initial_inverse_hessian_estimate (Tensor): the initial inverse hessian approximation at initial_position.
        It must be symmetric and positive definite.
        line_search_fn (str): indicate which line search method to use, only support 'strong wolfe' right now. May support 
            'Hager Zhang' in the futrue.
        max_line_search_iters (int): the maximum number of line search iterations.
        initial_step_length (float): step length used in first iteration of line search. different initial_step_length 
        may cause different optimal result.
        dtype ('float32' | 'float64'): In static graph, float64 will be convert to float32 due to paddle.assign limit.
    
    Returns:
        is_converge (bool): Indicates whether found the minimum within tolerance.
        num_func_calls (int): number of objective function called.
        position (Tensor): the position of the last iteration. If the search converged, this value is the argmin of 
        the objective function regrading to the initial position.
        objective_value (Tensor): objective function value at the `position`.
        objective_gradient (Tensor): objective function gradient at the `position`.
        inverse_hessian_estimate (Tensor): the estimate of inverse hessian at the `position`.

    Examples:
        .. code-block:: python

            import paddle
            
            def func(x):
                return paddle.dot(x, x)

            x0 = paddle.to_tensor([1.3, 2.7])
103
            results = paddle.incubate.optimizer.functional.minimize_bfgs(func, x0)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
            print("is_converge: ", results[0])
            print("the minimum of func is: ", results[2])
            # is_converge:  is_converge:  Tensor(shape=[1], dtype=bool, place=Place(gpu:0), stop_gradient=True,
            #        [True])
            # the minimum of func is:  Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0., 0.])
    """

    if dtype not in ['float32', 'float64']:
        raise ValueError(
            "The dtype must be 'float32' or 'float64', but the specified is {}.".
            format(dtype))

    op_name = 'minimize_bfgs'
    check_input_type(initial_position, 'initial_position', op_name)

    I = paddle.eye(initial_position.shape[0], dtype=dtype)
    if initial_inverse_hessian_estimate is None:
        initial_inverse_hessian_estimate = I
    else:
        check_input_type(initial_inverse_hessian_estimate,
                         'initial_inverse_hessian_estimate', op_name)
        check_initial_inverse_hessian_estimate(initial_inverse_hessian_estimate)

    Hk = paddle.assign(initial_inverse_hessian_estimate)
129 130
    # use detach and assign to create new tensor rather than =, or xk will share memory and grad with initial_position
    xk = paddle.assign(initial_position.detach())
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

    value, g1 = _value_and_gradient(objective_func, xk)
    num_func_calls = paddle.full(shape=[1], fill_value=1, dtype='int64')

    # when the dim of x is 1000, it needs more than 30 iters to get all element converge to minimum.
    k = paddle.full(shape=[1], fill_value=0, dtype='int64')
    done = paddle.full(shape=[1], fill_value=False, dtype='bool')
    is_converge = paddle.full(shape=[1], fill_value=False, dtype='bool')

    def cond(k, done, is_converge, num_func_calls, xk, value, g1, Hk):
        return (k < max_iters) & ~done

    def body(k, done, is_converge, num_func_calls, xk, value, g1, Hk):
        #############    compute pk    #############
        pk = -paddle.matmul(Hk, g1)

        #############    compute alpha by line serach    #############
        if line_search_fn == 'strong_wolfe':
            alpha, value, g2, ls_func_calls = strong_wolfe(
                f=objective_func,
                xk=xk,
                pk=pk,
                initial_step_length=initial_step_length,
                dtype=dtype)
        else:
            raise NotImplementedError(
                "Currently only support line_search_fn = 'strong_wolfe', but the specified is '{}'".
                format(line_search_fn))
        num_func_calls += ls_func_calls

        #############    update Hk    #############
        sk = alpha * pk
        yk = g2 - g1

        xk = xk + sk
        g1 = g2

        sk = paddle.unsqueeze(sk, 0)
        yk = paddle.unsqueeze(yk, 0)

        rhok_inv = paddle.dot(yk, sk)
        rhok = paddle.static.nn.cond(
            rhok_inv == 0., lambda: paddle.full(shape=[1], fill_value=1000.0, dtype=dtype), lambda: 1. / rhok_inv)

        Vk_transpose = I - rhok * sk * yk.t()
        Vk = I - rhok * yk * sk.t()
        Hk = paddle.matmul(paddle.matmul(Vk_transpose, Hk),
                           Vk) + rhok * sk * sk.t()

        k += 1

        #############    check convergence    #############
        gnorm = paddle.linalg.norm(g1, p=np.inf)
        pk_norm = paddle.linalg.norm(pk, p=np.inf)
        paddle.assign(done | (gnorm < tolerance_grad) |
                      (pk_norm < tolerance_change), done)
        paddle.assign(done, is_converge)
        # when alpha=0, there is no chance to get xk change.
        paddle.assign(done | (alpha == 0.), done)
        return [k, done, is_converge, num_func_calls, xk, value, g1, Hk]

    paddle.static.nn.while_loop(
        cond=cond,
        body=body,
        loop_vars=[k, done, is_converge, num_func_calls, xk, value, g1, Hk])
    return is_converge, num_func_calls, xk, value, g1, Hk