jit_kernel_exp.cc 12.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
18
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
T
tensor-tang 已提交
19 20 21 22 23

#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

28 29 30 31
#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
32 33 34 35 36 37
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;

T
tensor-tang 已提交
38
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
39
// try to use MKL to speedup
T
tensor-tang 已提交
40 41 42 43 44 45 46 47 48 49 50 51
template <typename T>
void VExpMKL(const T* x, T* y, int n);

template <>
void VExpMKL<float>(const float* x, float* y, int n) {
  platform::dynload::vsExp(n, x, y);
}

template <>
void VExpMKL<double>(const double* x, double* y, int n) {
  platform::dynload::vdExp(n, x, y);
}
T
tensor-tang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65

template <typename T>
void VSigmoidMKL(const T* x, T* y, int n) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  VExpMKL(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
  }
}
T
tensor-tang 已提交
66 67 68 69 70 71 72 73 74 75 76

template <typename T>
void VTanhMKL(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * x[i];
  }
  VSigmoidMKL(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
  }
}
T
tensor-tang 已提交
77 78
#endif

T
tensor-tang 已提交
79
/* VExp JitKernel */
T
tensor-tang 已提交
80
template <typename T>
T
tensor-tang 已提交
81 82
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
83 84 85 86
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VExpKernelImpl(int d) : VExpKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
87
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 70 * 8;
88 89
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::exp,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
90 91 92 93 94 95 96 97
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VExpMKL<T>;
      return;
T
tensor-tang 已提交
98
    }
T
tensor-tang 已提交
99
#endif
100
    this->Compute = refer::VExp<T>;
T
tensor-tang 已提交
101
  }
T
tensor-tang 已提交
102

T
tensor-tang 已提交
103 104 105
#ifdef PADDLE_WITH_XBYAK

 private:
106
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
107
#endif
T
tensor-tang 已提交
108 109
};

T
tensor-tang 已提交
110 111 112
#ifdef PADDLE_WITH_XBYAK
template <>
bool VExpKernelImpl<float>::useJIT(int d) {
113
  return gen::VActJitCode::init(d, gen::operand_type::exp);
T
tensor-tang 已提交
114 115 116
}
#endif

T
tensor-tang 已提交
117
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
118 119 120 121
template <>
bool VExpKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
122

T
tensor-tang 已提交
123 124 125 126
template <>
bool VExpKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135 136 137

#endif

/* VSigmoid JitKernel */
template <typename T>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
138
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 82 * 8;
139 140
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::sigmoid,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
141 142 143 144 145 146 147 148 149 150 151 152
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif

#ifdef PADDLE_WITH_MKLML
    // strictly it's a better impl with MKL, then is refer
    if (useMKL(d)) {
      this->Compute = VSigmoidMKL<T>;
      return;
    }
#endif
153
    this->Compute = refer::VSigmoid<T>;
T
tensor-tang 已提交
154
  }
T
tensor-tang 已提交
155

T
tensor-tang 已提交
156 157 158
#ifdef PADDLE_WITH_XBYAK

 private:
159
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
160 161 162 163 164 165
#endif
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VSigmoidKernelImpl<float>::useJIT(int d) {
166
  return gen::VActJitCode::init(d, gen::operand_type::sigmoid);
T
tensor-tang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179
}
#endif

#ifdef PADDLE_WITH_MKLML
template <>
bool VSigmoidKernelImpl<float>::useMKL(int d) {
  return d > 512;
}

template <>
bool VSigmoidKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
180 181
#endif

T
tensor-tang 已提交
182 183 184 185 186 187 188 189
/* VTanh JitKernel */
template <typename T>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
190
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 84 * 8;
191 192
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::tanh,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
193 194 195 196 197 198 199 200 201 202 203 204
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif

#ifdef PADDLE_WITH_MKLML
    // strictly it's a better impl with MKL, then is refer
    if (useMKL(d)) {
      this->Compute = VTanhMKL<T>;
      return;
    }
#endif
205
    this->Compute = refer::VTanh<T>;
T
tensor-tang 已提交
206
  }
T
tensor-tang 已提交
207

T
tensor-tang 已提交
208 209 210
#ifdef PADDLE_WITH_XBYAK

 private:
211
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
212 213 214 215 216 217
#endif
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VTanhKernelImpl<float>::useJIT(int d) {
218
  return gen::VActJitCode::init(d, gen::operand_type::tanh);
T
tensor-tang 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
}
#endif

#ifdef PADDLE_WITH_MKLML
template <>
bool VTanhKernelImpl<float>::useMKL(int d) {
  return d > 512;
}

template <>
bool VTanhKernelImpl<double>::useMKL(int d) {
  return true;
}
#endif

T
tensor-tang 已提交
234
REGISTER_JITKERNEL(vexp, VExpKernel);
T
tensor-tang 已提交
235
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
T
tensor-tang 已提交
236
REGISTER_JITKERNEL(vtanh, VTanhKernel);
237

T
tensor-tang 已提交
238
namespace detail {
239

T
tensor-tang 已提交
240 241
#ifdef __AVX__

242 243 244
#define ALIGN32 __attribute__((aligned(32)))

#define _PS256_CONST(Name, Val)                                      \
245
  static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
246 247 248
                                                 Val, Val, Val, Val}

#define _PI256_CONST(Name, Val)                                    \
249
  static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                                               Val, Val, Val, Val}

_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);

typedef union imm_xmm_union {
  __m256i imm;
  __m128i xmm[2];
} imm_xmm_union;

#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
  {                                         \
274
    imm_xmm_union u ALIGN32;                \
275 276 277 278 279 280 281
    u.imm = imm_;                           \
    xmm0_ = u.xmm[0];                       \
    xmm1_ = u.xmm[1];                       \
  }

#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
  {                                         \
282
    imm_xmm_union u ALIGN32;                \
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    u.xmm[0] = xmm0_;                       \
    u.xmm[1] = xmm1_;                       \
    imm_ = u.imm;                           \
  }

#define AVX2_BITOP_USING_SSE2(fn)                           \
  static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
    /* use SSE2 to perform the bitop AVX2 */                \
    __m128i x1, x2;                                         \
    __m256i ret;                                            \
    COPY_IMM_TO_XMM(x, x1, x2);                             \
    x1 = _mm_##fn(x1, y);                                   \
    x2 = _mm_##fn(x2, y);                                   \
    COPY_XMM_TO_IMM(x1, x2, ret);                           \
    return ret;                                             \
  }

#define AVX2_INTOP_USING_SSE2(fn)                                    \
  static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
    /* use SSE2 to perform the AVX2 integer operation */             \
    __m128i x1, x2;                                                  \
    __m128i y1, y2;                                                  \
    __m256i ret;                                                     \
    COPY_IMM_TO_XMM(x, x1, x2);                                      \
    COPY_IMM_TO_XMM(y, y1, y2);                                      \
    x1 = _mm_##fn(x1, y1);                                           \
    x2 = _mm_##fn(x2, y2);                                           \
    COPY_XMM_TO_IMM(x1, x2, ret);                                    \
    return ret;                                                      \
  }

AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);

T
tensor-tang 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
#define AVXEXP_BASE                                                            \
  __m256 tmp = _mm256_setzero_ps(), fx;                                        \
  __m256 one = *reinterpret_cast<const __m256*>(_ps256_one);                   \
  __m256i imm0;                                                                \
  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));       \
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));       \
  /* express exp(x) as exp(g + n*log(2)) */                                    \
  fx = _mm256_mul_ps(x,                                                        \
                     *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));  \
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));        \
  tmp = _mm256_floor_ps(fx);                                                   \
  /* if greater, substract 1 */                                                \
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);                            \
  mask = _mm256_and_ps(mask, one);                                             \
  fx = _mm256_sub_ps(tmp, mask);                                               \
  tmp = _mm256_mul_ps(fx,                                                      \
                      *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1)); \
  __m256 z = _mm256_mul_ps(                                                    \
      fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));             \
  x = _mm256_sub_ps(x, tmp);                                                   \
  x = _mm256_sub_ps(x, z);                                                     \
  z = _mm256_mul_ps(x, x);                                                     \
  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);           \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));   \
  y = _mm256_mul_ps(y, z);                                                     \
  y = _mm256_add_ps(y, x);                                                     \
  y = _mm256_add_ps(y, one);                                                   \
  /* build 2^n */                                                              \
  imm0 = _mm256_cvttps_epi32(fx)

361
__m256 ExpAVX(__m256 x) {
T
tensor-tang 已提交
362
  AVXEXP_BASE;
363 364 365 366 367 368 369 370
  // two AVX2 instructions using SSE2
  imm0 = avx2_mm256_add_epi32(imm0,
                              *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = avx2_mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
T
tensor-tang 已提交
371
#endif
372 373 374

#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
T
tensor-tang 已提交
375
  AVXEXP_BASE;
376 377 378 379 380 381 382 383 384 385
  // two AVX2 instructions
  imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = _mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

}  // namespace detail
T
tensor-tang 已提交
386 387 388 389
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle