jit_kernel_exp.cc 20.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <cmath>  // for exp
T
tensor-tang 已提交
17 18
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
19 20 21 22 23

#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

28 29 30 31
#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
32 33 34 35 36 37
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;

T
tensor-tang 已提交
38 39 40 41 42 43 44 45
// TODO(TJ): move refer codes to one file
template <typename T>
void VExpRefer(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

T
tensor-tang 已提交
46 47 48 49 50 51 52 53 54 55
template <typename T>
void VSigmoidRefer(const T* x, T* y, int n) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
  }
}

T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VExpMKL(const T* x, T* y, int n);

template <>
void VExpMKL<float>(const float* x, float* y, int n) {
  platform::dynload::vsExp(n, x, y);
}

template <>
void VExpMKL<double>(const double* x, double* y, int n) {
  platform::dynload::vdExp(n, x, y);
}
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82

template <typename T>
void VSigmoidMKL(const T* x, T* y, int n) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  VExpMKL(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
  }
}
T
tensor-tang 已提交
83 84
#endif

T
tensor-tang 已提交
85
/* VExp JitKernel */
T
tensor-tang 已提交
86
template <typename T>
T
tensor-tang 已提交
87 88
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VExpKernelImpl(int d) : VExpKernel<T>() {
    this->num_ = d;  // TODO(TJ): remove me when ComputeDeprecated done
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;  // should change
      jitcode_.reset(new gen::VExpJitCode(d, sz > 4096 ? sz : 4096));
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VExpMKL<T>;
      return;
T
tensor-tang 已提交
104
    }
T
tensor-tang 已提交
105 106 107 108 109
#endif
    this->Compute = VExpRefer<T>;
  }
  void ComputeDeprecated(const T* x, T* y) const override {
    VExpRefer(x, y, this->num_);
T
tensor-tang 已提交
110
  }
T
tensor-tang 已提交
111 112 113 114 115
#ifdef PADDLE_WITH_XBYAK

 private:
  std::unique_ptr<gen::VExpJitCode> jitcode_{nullptr};
#endif
T
tensor-tang 已提交
116 117
};

T
tensor-tang 已提交
118 119 120 121 122 123 124
#ifdef PADDLE_WITH_XBYAK
template <>
bool VExpKernelImpl<float>::useJIT(int d) {
  return gen::VExpJitCode::init(d);
}
#endif

T
tensor-tang 已提交
125
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
126 127 128 129
template <>
bool VExpKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
130

T
tensor-tang 已提交
131 132 133 134
template <>
bool VExpKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

#endif

/* VSigmoid JitKernel */
template <typename T>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
    this->num_ = d;  // TODO(TJ): remove me when ComputeDeprecated done
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;  // should change
      jitcode_.reset(new gen::VSigmoidJitCode(d, sz > 4096 ? sz : 4096));
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif

#ifdef PADDLE_WITH_MKLML
    // strictly it's a better impl with MKL, then is refer
    if (useMKL(d)) {
      this->Compute = VSigmoidMKL<T>;
      return;
    }
#endif
    this->Compute = VSigmoidRefer<T>;
  }
  void ComputeDeprecated(const T* x, T* y) const override {
    VSigmoidRefer(x, y, this->num_);
  }
#ifdef PADDLE_WITH_XBYAK

 private:
  std::unique_ptr<gen::VSigmoidJitCode> jitcode_{nullptr};
#endif
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VSigmoidKernelImpl<float>::useJIT(int d) {
  return gen::VSigmoidJitCode::init(d);
}
#endif

#ifdef PADDLE_WITH_MKLML
template <>
bool VSigmoidKernelImpl<float>::useMKL(int d) {
  return d > 512;
}

template <>
bool VSigmoidKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
190 191
#endif

T
tensor-tang 已提交
192
REGISTER_JITKERNEL(vexp, VExpKernel);
T
tensor-tang 已提交
193
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
194

T
tensor-tang 已提交
195
namespace detail {
196 197 198 199

#define ALIGN32 __attribute__((aligned(32)))

#define _PS256_CONST(Name, Val)                                      \
200
  static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
201 202 203
                                                 Val, Val, Val, Val}

#define _PI256_CONST(Name, Val)                                    \
204
  static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
                                               Val, Val, Val, Val}

_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);

typedef union imm_xmm_union {
  __m256i imm;
  __m128i xmm[2];
} imm_xmm_union;

#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
  {                                         \
229
    imm_xmm_union u ALIGN32;                \
230 231 232 233 234 235 236
    u.imm = imm_;                           \
    xmm0_ = u.xmm[0];                       \
    xmm1_ = u.xmm[1];                       \
  }

#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
  {                                         \
237
    imm_xmm_union u ALIGN32;                \
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    u.xmm[0] = xmm0_;                       \
    u.xmm[1] = xmm1_;                       \
    imm_ = u.imm;                           \
  }

#define AVX2_BITOP_USING_SSE2(fn)                           \
  static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
    /* use SSE2 to perform the bitop AVX2 */                \
    __m128i x1, x2;                                         \
    __m256i ret;                                            \
    COPY_IMM_TO_XMM(x, x1, x2);                             \
    x1 = _mm_##fn(x1, y);                                   \
    x2 = _mm_##fn(x2, y);                                   \
    COPY_XMM_TO_IMM(x1, x2, ret);                           \
    return ret;                                             \
  }

#define AVX2_INTOP_USING_SSE2(fn)                                    \
  static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
    /* use SSE2 to perform the AVX2 integer operation */             \
    __m128i x1, x2;                                                  \
    __m128i y1, y2;                                                  \
    __m256i ret;                                                     \
    COPY_IMM_TO_XMM(x, x1, x2);                                      \
    COPY_IMM_TO_XMM(y, y1, y2);                                      \
    x1 = _mm_##fn(x1, y1);                                           \
    x2 = _mm_##fn(x2, y2);                                           \
    COPY_XMM_TO_IMM(x1, x2, ret);                                    \
    return ret;                                                      \
  }

AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);

T
tensor-tang 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
#define AVXEXP_BASE                                                            \
  __m256 tmp = _mm256_setzero_ps(), fx;                                        \
  __m256 one = *reinterpret_cast<const __m256*>(_ps256_one);                   \
  __m256i imm0;                                                                \
  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));       \
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));       \
  /* express exp(x) as exp(g + n*log(2)) */                                    \
  fx = _mm256_mul_ps(x,                                                        \
                     *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));  \
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));        \
  tmp = _mm256_floor_ps(fx);                                                   \
  /* if greater, substract 1 */                                                \
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);                            \
  mask = _mm256_and_ps(mask, one);                                             \
  fx = _mm256_sub_ps(tmp, mask);                                               \
  tmp = _mm256_mul_ps(fx,                                                      \
                      *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1)); \
  __m256 z = _mm256_mul_ps(                                                    \
      fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));             \
  x = _mm256_sub_ps(x, tmp);                                                   \
  x = _mm256_sub_ps(x, z);                                                     \
  z = _mm256_mul_ps(x, x);                                                     \
  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);           \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));   \
  y = _mm256_mul_ps(y, z);                                                     \
  y = _mm256_add_ps(y, x);                                                     \
  y = _mm256_add_ps(y, one);                                                   \
  /* build 2^n */                                                              \
  imm0 = _mm256_cvttps_epi32(fx)

316
__m256 ExpAVX(__m256 x) {
T
tensor-tang 已提交
317
  AVXEXP_BASE;
318 319 320 321 322 323 324 325 326 327 328
  // two AVX2 instructions using SSE2
  imm0 = avx2_mm256_add_epi32(imm0,
                              *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = avx2_mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}

#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
T
tensor-tang 已提交
329
  AVXEXP_BASE;
330 331 332 333 334 335 336 337 338 339 340 341
  // two AVX2 instructions
  imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = _mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

}  // namespace detail

#define INTRI_SIGMOID(tmp, min, max, expisa)      \
342 343 344
  tmp = _mm256_max_ps(tmp, min);                  \
  tmp = _mm256_min_ps(tmp, max);                  \
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
345
  tmp = expisa(tmp);                              \
346 347
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)
T
tensor-tang 已提交
348
#undef INTRI_VSIGMOID
349

T
tensor-tang 已提交
350 351 352 353 354
/* VTanh JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
T
tensor-tang 已提交
355
    this->num_ = d;
T
tensor-tang 已提交
356 357 358 359
    vscal_ = KernelPool::Instance().template Get<VScalKernel<T>>(d);
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<T>>(d);
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<T>>(d);
  }
T
tensor-tang 已提交
360
  void ComputeDeprecated(const T* x, T* y) const override {
T
tensor-tang 已提交
361
    const T a = static_cast<T>(2), b = static_cast<T>(-1);
T
tensor-tang 已提交
362
    vscal_->Compute(&a, x, y, this->num_);
T
tensor-tang 已提交
363
    vsigmoid_->ComputeDeprecated(y, y);
T
tensor-tang 已提交
364
    vscal_->Compute(&a, y, y, this->num_);
T
tensor-tang 已提交
365
    vaddbias_->Compute(&b, y, y, this->num_);
T
tensor-tang 已提交
366 367 368 369 370 371 372 373
  }

 private:
  std::shared_ptr<const VScalKernel<T>> vscal_;
  std::shared_ptr<const VSigmoidKernel<T>> vsigmoid_;
  std::shared_ptr<const VAddBiasKernel<T>> vaddbias_;
};

374
#define INTRI_VTANH(tmp, expisa)                           \
T
tensor-tang 已提交
375 376
  tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp);         \
  tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \
377
  tmp = expisa(tmp);                                       \
T
tensor-tang 已提交
378 379 380 381
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp);          \
  tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp);          \
  tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f))

T
tensor-tang 已提交
382 383 384 385 386 387 388
#define INTRI8_FLOAT(isa, expisa)                                             \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kEQ8>::ComputeDeprecated(const float* x,   \
                                                            float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                                          \
    INTRI_VTANH(tmp, expisa);                                                 \
    _mm256_storeu_ps(y, tmp);                                                 \
T
tensor-tang 已提交
389 390
  }

T
tensor-tang 已提交
391 392 393 394 395 396 397 398 399 400
#define INTRI16_FLOAT(isa, expisa)                                             \
  template <>                                                                  \
  void VTanhKernelImpl<float, isa, kEQ16>::ComputeDeprecated(const float* x,   \
                                                             float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                                          \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                      \
    INTRI_VTANH(tmp0, expisa);                                                 \
    INTRI_VTANH(tmp1, expisa);                                                 \
    _mm256_storeu_ps(y, tmp0);                                                 \
    _mm256_storeu_ps(y + 8, tmp1);                                             \
T
tensor-tang 已提交
401 402
  }

403
#define INTRI_GT8LT16_FLOAT(isa, expisa)                                      \
T
tensor-tang 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT8LT16>::VTanhKernelImpl(int d)               \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->end_ = AVX_FLOAT_BLOCK;                                             \
    this->rest_ = d - this->end_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
T
tensor-tang 已提交
418 419
  void VTanhKernelImpl<float, isa, kGT8LT16>::ComputeDeprecated(              \
      const float* x, float* y) const {                                       \
T
tensor-tang 已提交
420
    __m256 tmp = _mm256_loadu_ps(x);                                          \
421
    INTRI_VTANH(tmp, expisa);                                                 \
T
tensor-tang 已提交
422 423 424
    _mm256_storeu_ps(y, tmp);                                                 \
    x += AVX_FLOAT_BLOCK;                                                     \
    y += AVX_FLOAT_BLOCK;                                                     \
T
tensor-tang 已提交
425
    const float a = 2.f, b = -1.f;                                            \
T
tensor-tang 已提交
426
    vscal_->Compute(&a, x, y, this->num_);                                    \
T
tensor-tang 已提交
427
    vsigmoid_->ComputeDeprecated(y, y);                                       \
T
tensor-tang 已提交
428
    vscal_->Compute(&a, y, y, this->num_);                                    \
T
tensor-tang 已提交
429
    vaddbias_->Compute(&b, y, y, this->num_);                                 \
T
tensor-tang 已提交
430 431
  }

T
tensor-tang 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
#define INTRI_GT16_FLOAT(isa, expisa)                                          \
  template <>                                                                  \
  VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d)                   \
      : VTanhKernel<float>() {                                                 \
    this->num_ = d;                                                            \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                         \
    this->end_ = d - this->rest_;                                              \
    vscal_ =                                                                   \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_);  \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(    \
        this->rest_);                                                          \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(    \
        this->rest_);                                                          \
  }                                                                            \
  template <>                                                                  \
  void VTanhKernelImpl<float, isa, kGT16>::ComputeDeprecated(const float* x,   \
                                                             float* y) const { \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                    \
      __m256 tmp = _mm256_loadu_ps(x + i);                                     \
      INTRI_VTANH(tmp, expisa);                                                \
      _mm256_storeu_ps(y + i, tmp);                                            \
    }                                                                          \
    x += this->end_;                                                           \
    y += this->end_;                                                           \
    const float a = 2.f, b = -1.f;                                             \
    vscal_->Compute(&a, x, y, this->num_);                                     \
    vsigmoid_->ComputeDeprecated(y, y);                                        \
    vscal_->Compute(&a, y, y, this->num_);                                     \
    vaddbias_->Compute(&b, y, y, this->num_);                                  \
T
tensor-tang 已提交
461 462 463
  }

#ifdef __AVX__
464 465 466 467
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
468
#endif
T
tensor-tang 已提交
469
#ifdef __AVX2__
470 471
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
T
tensor-tang 已提交
472 473 474
// maybe use avx at gt8lt16 and gt16
#endif
#ifdef __AVX512F__
475 476
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
T
tensor-tang 已提交
477 478 479 480 481 482 483 484 485
// maybe use avx at gt8lt16 and gt16
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#undef INTRI_VTANH

T
tensor-tang 已提交
486
REGISTER_JITKERNEL_DEPRECATED(vtanh, VTanhKernel);
T
tensor-tang 已提交
487

T
tensor-tang 已提交
488
#undef JITKERNEL_NEW_ACT_IMPL
489

T
tensor-tang 已提交
490 491 492 493
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle