cudnn_helper.h 16.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
Y
Pass CI  
Yu Yang 已提交
18
#include <vector>
19 20

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
23
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
25

D
dzhwinter 已提交
26 27
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
28 29 30
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

T
typhoonzero 已提交
63 64
#define CUDNN_ENFORCE(condition)                                     \
  do {                                                               \
P
peizhilin 已提交
65
    auto status = condition;                                         \
T
typhoonzero 已提交
66 67 68
    if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) {                  \
      PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
    }                                                                \
Q
Qiao Longfei 已提交
69 70
  } while (false)

D
"fix"  
dzhwinter 已提交
71 72 73 74
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
75
  kNDHWC,  // add, liyamei
D
"fix"  
dzhwinter 已提交
76 77 78 79 80 81
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
82 83
  kAverageExclusive,
  kAverageInclusive,
D
"fix"  
dzhwinter 已提交
84 85
};

Q
qingqing01 已提交
86 87 88 89 90 91 92 93 94 95
enum ActivationMode {
  kNone,  // activation identity
  kSigmoid,
  kRelu,
  kRelu6,
  kReluX,
  kTanh,
  kBandPass,
};

D
"done"  
dzhwinter 已提交
96 97 98 99 100 101
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
102

D
dzhwinter 已提交
103 104 105 106
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
107
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
108
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
109 110
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
111 112 113 114 115 116 117
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
118

D
dzhwinter 已提交
119 120 121 122
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
123
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
124
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
125 126
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
127 128 129 130 131 132
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
133 134
#endif  // CUDNN_VERSION < 6000

Q
qingqing01 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
inline ActivationMode StringToActivationMode(const std::string& str) {
  if (str == "identity") {
    return ActivationMode::kNone;
  } else if (str == "sigmoid") {
    return ActivationMode::kSigmoid;
  } else if (str == "relu") {
    return ActivationMode::kRelu;
  } else if (str == "relu6") {
    return ActivationMode::kRelu6;
  } else if (str == "relux") {
    return ActivationMode::kReluX;
  } else if (str == "tanh") {
    return ActivationMode::kTanh;
  } else if (str == "bandpass") {
    return ActivationMode::kBandPass;
  } else {
    PADDLE_THROW("Unknown activation string: %s", str);
  }
}

D
dangqingqing 已提交
155 156 157
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
158 159 160 161
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
162
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
163 164
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
165
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
166
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
167 168 169
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
170
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
171 172 173 174
    return &v;
  }
};

D
dangqingqing 已提交
175 176 177 178
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
179 180
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
181 182 183 184 185 186 187 188
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
189 190 191 192 193 194
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
195 196
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
197 198 199 200 201 202 203 204
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
205 206
};

C
chengduoZH 已提交
207 208
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
209 210 211 212 213
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
214
    case DataLayout::kNCDHW:
武毅 已提交
215
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
216 217
    case DataLayout::kNDHWC:
      return CUDNN_TENSOR_NHWC;  // add, liyamei
D
dangqingqing 已提交
218 219 220 221 222 223 224 225 226
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
227
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&desc_));
D
dangqingqing 已提交
228
  }
Z
Zeng Jinle 已提交
229
  ~ScopedTensorDescriptor() PADDLE_MAY_THROW {
230
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(desc_));
D
dangqingqing 已提交
231 232 233 234
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
235 236 237
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
238 239
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
240 241
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
242
    }
武毅 已提交
243
    // Update tensor descriptor dims setting if groups > 1
244 245
    // NOTE: Here, Assume using NCHW or NCDHW order
    std::vector<int> dims_with_group(dims.begin(), dims.end());
武毅 已提交
246 247 248
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

    if (dims.size() == 4) {
      if (format == CUDNN_TENSOR_NCHW) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
            desc_, type, dims_with_group.size(), dims_with_group.data(),
            strides.data()));
      } else {  // CUDNN_TENSOR_NHWC
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensor4dDescriptor(
            desc_, format, type, dims[0], dims[3], dims[1], dims[2]));
      }
    } else if (dims.size() == 5) {
      if (format == CUDNN_TENSOR_NCHW) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
            desc_, type, dims_with_group.size(), dims_with_group.data(),
            strides.data()));
      } else {  // CUDNN_TENSOR_NHWC
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
            desc_, format, type, dims.size(), dims.data()));
      }
    }
D
dangqingqing 已提交
269 270 271 272 273
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
274 275 276 277
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
278 279 280 281 282 283 284 285 286 287
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
288
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&desc_));
D
dangqingqing 已提交
289
  }
Z
Zeng Jinle 已提交
290
  ~ScopedFilterDescriptor() PADDLE_MAY_THROW {
291
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(desc_));
D
dangqingqing 已提交
292 293 294 295
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
296 297
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
298
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
299
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
300 301
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
302 303 304 305 306
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
307
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
308 309
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
310 311 312 313 314
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
315 316
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
317
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
318
                      kernel, groups);
D
dangqingqing 已提交
319 320 321 322 323 324 325 326 327 328
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
329 330
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateConvolutionDescriptor(&desc_));
D
dangqingqing 已提交
331
  }
Z
Zeng Jinle 已提交
332
  ~ScopedConvolutionDescriptor() PADDLE_MAY_THROW {
333 334
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyConvolutionDescriptor(desc_));
D
dangqingqing 已提交
335 336 337 338 339 340 341
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
342

343
#if !CUDNN_VERSION_MIN(6, 0, 0)
344 345 346 347 348
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
349 350 351
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
352 353 354
    }
#endif

K
Kexin Zhao 已提交
355 356
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
357
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
358
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
359
        CUDNN_CROSS_CORRELATION, compute_type));
360
    return desc_;
D
dangqingqing 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
378
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreatePoolingDescriptor(&desc_));
D
dangqingqing 已提交
379
  }
Z
Zeng Jinle 已提交
380
  ~ScopedPoolingDescriptor() PADDLE_MAY_THROW {
381
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyPoolingDescriptor(desc_));
D
dangqingqing 已提交
382 383 384 385 386 387 388 389
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
390
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
391
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
392 393
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
394
    return desc_;
D
dangqingqing 已提交
395 396 397 398 399 400 401
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

W
whs 已提交
402 403 404
class ScopedSpatialTransformerDescriptor {
 public:
  ScopedSpatialTransformerDescriptor() {
405 406
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
W
whs 已提交
407
  }
Z
Zeng Jinle 已提交
408
  ~ScopedSpatialTransformerDescriptor() PADDLE_MAY_THROW {
409 410
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
W
whs 已提交
411 412 413 414 415
  }

  template <typename T>
  inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
                                                        const int dimA[]) {
416
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetSpatialTransformerNdDescriptor(
W
whs 已提交
417 418 419 420 421 422 423 424 425
        desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
    return desc_;
  }

 private:
  cudnnSpatialTransformerDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};

Q
qingqing01 已提交
426 427 428
class ScopedActivationDescriptor {
 public:
  ScopedActivationDescriptor() {
429 430
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateActivationDescriptor(&desc_));
Q
qingqing01 已提交
431
  }
Z
Zeng Jinle 已提交
432
  ~ScopedActivationDescriptor() PADDLE_MAY_THROW {
433 434
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyActivationDescriptor(desc_));
Q
qingqing01 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
  }

  template <typename T>
  inline cudnnActivationDescriptor_t descriptor(
      const std::string& act, double value_max = static_cast<double>(0.)) {
    double relu_ceiling = 0.0;
    ActivationMode activation_mode = StringToActivationMode(act);
    cudnnActivationMode_t mode;
    switch (activation_mode) {
#if CUDNN_VERSION >= 7100
      case ActivationMode::kNone:
        mode = CUDNN_ACTIVATION_IDENTITY;
        break;
#endif
      case ActivationMode::kRelu6:
        relu_ceiling = 6.0;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kReluX:
        relu_ceiling = value_max;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kRelu:
        mode = CUDNN_ACTIVATION_RELU;
        break;
      case ActivationMode::kSigmoid:
        mode = CUDNN_ACTIVATION_SIGMOID;
        break;
      case ActivationMode::kTanh:
        mode = CUDNN_ACTIVATION_TANH;
        break;
      default:
        PADDLE_THROW("unrecognized activation mode: %d .",
                     static_cast<int>(activation_mode));
    }
    CUDNN_ENFORCE(dynload::cudnnSetActivationDescriptor(
        desc_, mode, CUDNN_NOT_PROPAGATE_NAN, relu_ceiling));
    return desc_;
  }

 private:
  cudnnActivationDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
};

480 481 482 483 484
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
485
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
486 487 488 489 490 491
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

W
Wu Yi 已提交
492 493 494 495
#if CUDNN_VERSION >= 7001
class ScopedCTCLossDescriptor {
 public:
  ScopedCTCLossDescriptor() {
496
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateCTCLossDescriptor(&desc_));
W
Wu Yi 已提交
497
  }
Z
Zeng Jinle 已提交
498
  ~ScopedCTCLossDescriptor() PADDLE_MAY_THROW {
499
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyCTCLossDescriptor(desc_));
W
Wu Yi 已提交
500 501 502 503
  }

  template <typename T>
  inline cudnnCTCLossDescriptor_t descriptor() {
504
    PADDLE_ENFORCE_CUDA_SUCCESS(
W
Wu Yi 已提交
505 506 507 508 509 510 511 512 513 514
        dynload::cudnnSetCTCLossDescriptor(desc_, CudnnDataType<T>::type));
    return desc_;
  }

 private:
  cudnnCTCLossDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
};
#endif

D
dangqingqing 已提交
515 516
}  // namespace platform
}  // namespace paddle