cudnn_helper.h 15.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
Y
Pass CI  
Yu Yang 已提交
18
#include <vector>
19 20

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
23
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
25

D
dzhwinter 已提交
26 27
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
28 29 30
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

T
typhoonzero 已提交
63 64
#define CUDNN_ENFORCE(condition)                                     \
  do {                                                               \
P
peizhilin 已提交
65
    auto status = condition;                                         \
T
typhoonzero 已提交
66 67 68
    if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) {                  \
      PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
    }                                                                \
Q
Qiao Longfei 已提交
69 70
  } while (false)

D
"fix"  
dzhwinter 已提交
71 72 73 74 75 76 77 78 79 80
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
81 82
  kAverageExclusive,
  kAverageInclusive,
D
"fix"  
dzhwinter 已提交
83 84
};

Q
qingqing01 已提交
85 86 87 88 89 90 91 92 93 94
enum ActivationMode {
  kNone,  // activation identity
  kSigmoid,
  kRelu,
  kRelu6,
  kReluX,
  kTanh,
  kBandPass,
};

D
"done"  
dzhwinter 已提交
95 96 97 98 99 100
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
101

D
dzhwinter 已提交
102 103 104 105
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
106
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
107
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
108 109
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
110 111 112 113 114 115 116
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
117

D
dzhwinter 已提交
118 119 120 121
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
122
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
123
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
124 125
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
126 127 128 129 130 131
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
132 133
#endif  // CUDNN_VERSION < 6000

Q
qingqing01 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
inline ActivationMode StringToActivationMode(const std::string& str) {
  if (str == "identity") {
    return ActivationMode::kNone;
  } else if (str == "sigmoid") {
    return ActivationMode::kSigmoid;
  } else if (str == "relu") {
    return ActivationMode::kRelu;
  } else if (str == "relu6") {
    return ActivationMode::kRelu6;
  } else if (str == "relux") {
    return ActivationMode::kReluX;
  } else if (str == "tanh") {
    return ActivationMode::kTanh;
  } else if (str == "bandpass") {
    return ActivationMode::kBandPass;
  } else {
    PADDLE_THROW("Unknown activation string: %s", str);
  }
}

D
dangqingqing 已提交
154 155 156
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
157 158 159 160
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
161
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
162 163
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
164
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
165
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
166 167 168
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
169
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
170 171 172 173
    return &v;
  }
};

D
dangqingqing 已提交
174 175 176 177
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
178 179
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
180 181 182 183 184 185 186 187
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
188 189 190 191 192 193
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
194 195
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
196 197 198 199 200 201 202 203
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
204 205
};

C
chengduoZH 已提交
206 207
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
208 209 210 211 212
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
213
    case DataLayout::kNCDHW:
武毅 已提交
214
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
D
dangqingqing 已提交
215 216 217 218 219 220 221 222 223
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
224
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&desc_));
D
dangqingqing 已提交
225 226
  }
  ~ScopedTensorDescriptor() {
227
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(desc_));
D
dangqingqing 已提交
228 229 230 231
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
232 233 234
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
235 236
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
237 238
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
239
    }
武毅 已提交
240
    // Update tensor descriptor dims setting if groups > 1
武毅 已提交
241
    // NOTE: Assume using NCHW or NCDHW order
武毅 已提交
242 243 244 245
    std::vector<int> dims_with_group(dims.begin(), dims.end());  // copy
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
246
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
武毅 已提交
247 248
        desc_, type, dims_with_group.size(), dims_with_group.data(),
        strides.data()));
D
dangqingqing 已提交
249 250 251 252 253
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
254 255 256 257
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
258 259 260 261 262 263 264 265 266 267
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
268
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&desc_));
D
dangqingqing 已提交
269 270
  }
  ~ScopedFilterDescriptor() {
271
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(desc_));
D
dangqingqing 已提交
272 273 274 275
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
276 277
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
278
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
279
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
280 281
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
282 283 284 285 286
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
287
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
288 289
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
290 291 292 293 294
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
295 296
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
297
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
298
                      kernel, groups);
D
dangqingqing 已提交
299 300 301 302 303 304 305 306 307 308
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
309 310
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateConvolutionDescriptor(&desc_));
D
dangqingqing 已提交
311 312
  }
  ~ScopedConvolutionDescriptor() {
313 314
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyConvolutionDescriptor(desc_));
D
dangqingqing 已提交
315 316 317 318 319 320 321
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
322

323
#if !CUDNN_VERSION_MIN(6, 0, 0)
324 325 326 327 328
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
329 330 331
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
332 333 334
    }
#endif

K
Kexin Zhao 已提交
335 336
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
337
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
338
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
339
        CUDNN_CROSS_CORRELATION, compute_type));
340
    return desc_;
D
dangqingqing 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
358
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreatePoolingDescriptor(&desc_));
D
dangqingqing 已提交
359 360
  }
  ~ScopedPoolingDescriptor() {
361
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyPoolingDescriptor(desc_));
D
dangqingqing 已提交
362 363 364 365 366 367 368 369
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
370
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
371
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
372 373
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
374
    return desc_;
D
dangqingqing 已提交
375 376 377 378 379 380 381
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

W
whs 已提交
382 383 384
class ScopedSpatialTransformerDescriptor {
 public:
  ScopedSpatialTransformerDescriptor() {
385 386
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
W
whs 已提交
387 388
  }
  ~ScopedSpatialTransformerDescriptor() {
389 390
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
W
whs 已提交
391 392 393 394 395
  }

  template <typename T>
  inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
                                                        const int dimA[]) {
396
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetSpatialTransformerNdDescriptor(
W
whs 已提交
397 398 399 400 401 402 403 404 405
        desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
    return desc_;
  }

 private:
  cudnnSpatialTransformerDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};

Q
qingqing01 已提交
406 407 408
class ScopedActivationDescriptor {
 public:
  ScopedActivationDescriptor() {
409 410
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateActivationDescriptor(&desc_));
Q
qingqing01 已提交
411 412
  }
  ~ScopedActivationDescriptor() {
413 414
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyActivationDescriptor(desc_));
Q
qingqing01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
  }

  template <typename T>
  inline cudnnActivationDescriptor_t descriptor(
      const std::string& act, double value_max = static_cast<double>(0.)) {
    double relu_ceiling = 0.0;
    ActivationMode activation_mode = StringToActivationMode(act);
    cudnnActivationMode_t mode;
    switch (activation_mode) {
#if CUDNN_VERSION >= 7100
      case ActivationMode::kNone:
        mode = CUDNN_ACTIVATION_IDENTITY;
        break;
#endif
      case ActivationMode::kRelu6:
        relu_ceiling = 6.0;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kReluX:
        relu_ceiling = value_max;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kRelu:
        mode = CUDNN_ACTIVATION_RELU;
        break;
      case ActivationMode::kSigmoid:
        mode = CUDNN_ACTIVATION_SIGMOID;
        break;
      case ActivationMode::kTanh:
        mode = CUDNN_ACTIVATION_TANH;
        break;
      default:
        PADDLE_THROW("unrecognized activation mode: %d .",
                     static_cast<int>(activation_mode));
    }
    CUDNN_ENFORCE(dynload::cudnnSetActivationDescriptor(
        desc_, mode, CUDNN_NOT_PROPAGATE_NAN, relu_ceiling));
    return desc_;
  }

 private:
  cudnnActivationDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
};

460 461 462 463 464
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
465
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
466 467 468 469 470 471
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

W
Wu Yi 已提交
472 473 474 475
#if CUDNN_VERSION >= 7001
class ScopedCTCLossDescriptor {
 public:
  ScopedCTCLossDescriptor() {
476
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateCTCLossDescriptor(&desc_));
W
Wu Yi 已提交
477 478
  }
  ~ScopedCTCLossDescriptor() {
479
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyCTCLossDescriptor(desc_));
W
Wu Yi 已提交
480 481 482 483
  }

  template <typename T>
  inline cudnnCTCLossDescriptor_t descriptor() {
484
    PADDLE_ENFORCE_CUDA_SUCCESS(
W
Wu Yi 已提交
485 486 487 488 489 490 491 492 493 494
        dynload::cudnnSetCTCLossDescriptor(desc_, CudnnDataType<T>::type));
    return desc_;
  }

 private:
  cudnnCTCLossDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
};
#endif

D
dangqingqing 已提交
495 496
}  // namespace platform
}  // namespace paddle