DeConv3DLayer.cpp 7.8 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduoZH 已提交
15
#include "DeConv3DLayer.h"
C
chengduoZH 已提交
16 17 18 19 20 21 22 23
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(deconv3d, DeConv3DLayer);

bool DeConv3DLayer::init(const LayerMap &layerMap,
C
chengduoZH 已提交
24
                         const ParameterMap &parameterMap) {
C
chengduoZH 已提交
25 26 27 28 29 30
  if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
  // for Deconv, the dimension of Kernel is
  // channel * output * depth * height * weigth
  // Matrix storage format: (output * depth * height * weigth) x  channel
  for (int index = 0; index < config_.inputs().size(); ++index) {
    M_.push_back(filterChannels_[index]);
C
chengduoZH 已提交
31
    K_.push_back(filterPixels_[index] * (numFilters_ / groups_[index]));
C
chengduoZH 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44

    // create a new weight
    size_t height, width;
    height = filterPixels_[index] * numFilters_;
    width = filterChannels_[index];
    CHECK_EQ(parameters_[index]->getSize(), width * height);
    Weight *w = new Weight(height, width, parameters_[index]);
    weights_.emplace_back(w);
  }
  if (biasParameter_.get()) {
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
C
chengduoZH 已提交
45
          std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
C
chengduoZH 已提交
46 47
    } else {
      biases_ =
C
chengduoZH 已提交
48
          std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
C
chengduoZH 已提交
49
    }
C
chengduoZH 已提交
50 51 52 53 54 55 56 57 58 59
  }
  return true;
}

size_t DeConv3DLayer::getSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  outputH_.clear();
  outputW_.clear();
  outputD_.clear();
  N_.clear();
C
chengduoZH 已提交
60
  NOut_.clear();
C
chengduoZH 已提交
61 62
  size_t layerSize = 0;
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
C
chengduoZH 已提交
63 64 65 66 67 68 69
    outputW_.push_back(
        imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
    outputH_.push_back(imageSize(
        imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
    outputD_.push_back(imageSize(
        imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
    NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
C
chengduoZH 已提交
70 71
    N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
    CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
C
chengduoZH 已提交
72
    layerSize += NOut_[i] * numFilters_;
C
chengduoZH 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  }
  getOutput().setFrameHeight(outputH_[0]);
  getOutput().setFrameWidth(outputW_[0]);
  getOutput().setFrameDepth(outputD_[0]);
  return layerSize;
}

void DeConv3DLayer::forward(PassType passType) {
  Layer::forward(passType);
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  int outWidth = getSize();
  resetOutput(batchSize, outWidth);
  const MatrixPtr outMat = getOutputValue();

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
C
chengduoZH 已提交
89
    const MatrixPtr &inMat = getInputValue(i);
C
chengduoZH 已提交
90 91 92 93
    int M = M_[i];
    int N = N_[i];
    int K = K_[i];
    MatrixPtr wMat = weights_[i]->getW();
C
chengduoZH 已提交
94
    Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
C
chengduoZH 已提交
95
    for (int n = 0; n < batchSize; ++n) {
C
chengduoZH 已提交
96 97 98 99 100 101 102
      real *inData = inMat->getData() + n * inMat->getStride();
      for (int g = 0; g < groups_[i]; ++g) {
        MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
        MatrixPtr wMatSub = wMat->subMatrix(g * K, K);
        MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
        colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0);
        inData += M * N;
C
chengduoZH 已提交
103
      }
C
chengduoZH 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
      colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(),
                       numFilters_,
                       outputD_[i],
                       outputH_[i],
                       outputW_[i],
                       filterSizeZ_[i],
                       filterSizeY_[i],
                       filterSize_[i],
                       strideZ_[i],
                       strideY_[i],
                       stride_[i],
                       paddingZ_[i],
                       paddingY_[i],
                       padding_[i],
                       1.0,
                       1.0);
C
chengduoZH 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    }
  }
  if (nullptr != this->biasParameter_) {
    REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
    this->addBias();
  }
  forwardActivation();
}

void DeConv3DLayer::backward(const UpdateCallback &callback) {
  backwardActivation();
  int batchSize = getOutputGrad()->getHeight();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases();
    biases_->getParameterPtr()->incUpdate(callback);
  }
C
chengduoZH 已提交
136 137 138 139 140
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    if (weights_[i]->getWGrad() || this->needGradient_) {
      int M = M_[i];
      int N = N_[i];
      int K = K_[i];
C
chengduoZH 已提交
141
      REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
C
chengduoZH 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
      Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
      const MatrixPtr &inMat = getInputValue(i);
      for (int n = 0; n < batchSize; ++n) {
        colBuf_->vol2Col(
            getOutputGrad()->getData() + n * getOutputGrad()->getStride(),
            numFilters_,
            outputD_[i],
            outputH_[i],
            outputW_[i],
            filterSizeZ_[i],
            filterSizeY_[i],
            filterSize_[i],
            strideZ_[i],
            strideY_[i],
            stride_[i],
            paddingZ_[i],
            paddingY_[i],
            padding_[i]);
        if (weights_[i]->getWGrad()) {
          real *inData = inMat->getData() + n * inMat->getStride();
          for (int g = 0; g < groups_[i]; ++g) {
            MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
            MatrixPtr wGradMatSub =
                weights_[i]->getWGrad()->subMatrix(g * K, K);
            MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
            wGradMatSub->mul(
                *colBufDataSub, *(inMatSub->getTranspose()), 1.0, 1.0);
            inData += M * N;
          }
C
chengduoZH 已提交
171
        }
C
chengduoZH 已提交
172 173 174 175 176 177 178 179 180 181 182
        if (getInputGrad(i)) {
          real *preGrad =
              getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
          for (int g = 0; g < groups_[i]; ++g) {
            MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K);
            MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K);
            MatrixPtr inGradMatSub =
                Matrix::create(preGrad, M, N, false, useGpu_);
            inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 1.0);
            preGrad += M * N;
          }
C
chengduoZH 已提交
183 184 185
        }
      }
      REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
C
chengduoZH 已提交
186
      weights_[i]->getParameterPtr()->incUpdate(callback);
C
chengduoZH 已提交
187 188 189
    }
  }
}
C
chengduoZH 已提交
190 191
void DeConv3DLayer::bpropWeights(int i) {}
void DeConv3DLayer::bpropData(int i) {}
C
chengduoZH 已提交
192 193

void DeConv3DLayer::bpropBiases() {
C
chengduoZH 已提交
194 195 196 197 198
  MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(),
                                    1,
                                    biases_->getWGrad()->getElementCnt(),
                                    false,
                                    useGpu_);
C
chengduoZH 已提交
199
  const MatrixPtr &outGradMat = getOutputGrad();
C
chengduoZH 已提交
200 201

  if (this->sharedBiases_) {
C
chengduoZH 已提交
202
    biases->collectSharedBias(*outGradMat, 1.0f);
C
chengduoZH 已提交
203
  } else {
C
chengduoZH 已提交
204
    biases->collectBias(*outGradMat, 1.0f);
C
chengduoZH 已提交
205 206 207 208 209
  }
}

void DeConv3DLayer::addBias() {
  MatrixPtr outMat = getOutputValue();
C
chengduoZH 已提交
210 211 212 213 214
  MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
                                  1,
                                  biases_->getW()->getElementCnt(),
                                  false,
                                  useGpu_);
C
chengduoZH 已提交
215
  if (this->sharedBiases_) {
C
chengduoZH 已提交
216
    outMat->addSharedBias(*(bias), 1.0f);
C
chengduoZH 已提交
217
  } else {
C
chengduoZH 已提交
218
    outMat->addBias(*(bias), 1.0f);
C
chengduoZH 已提交
219 220 221 222
  }
}

}  // namespace paddle