DeConv3DLayer.cpp 7.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduoZH 已提交
15
#include "DeConv3DLayer.h"
C
chengduoZH 已提交
16 17 18 19 20 21 22 23
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(deconv3d, DeConv3DLayer);

#define DECONV_OUTPUT_SIZE(IN_SIZE, STRID, PAD, KSIZE) \
C
chengduoZH 已提交
24
  (((IN_SIZE)-1) * (STRID)-2 * (PAD) + (KSIZE))
C
chengduoZH 已提交
25 26

bool DeConv3DLayer::init(const LayerMap &layerMap,
C
chengduoZH 已提交
27
                         const ParameterMap &parameterMap) {
C
chengduoZH 已提交
28 29 30 31 32 33
  if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
  // for Deconv, the dimension of Kernel is
  // channel * output * depth * height * weigth
  // Matrix storage format: (output * depth * height * weigth) x  channel
  for (int index = 0; index < config_.inputs().size(); ++index) {
    M_.push_back(filterChannels_[index]);
C
chengduoZH 已提交
34 35 36 37 38 39 40
    K_.push_back(filterPixels_[index] * (numFilters_ / groups_[index]));
    if (weights_[index]->getW())
      weights_[index]->getW()->reshape(filterPixels_[index] * numFilters_,
                                       filterChannels_[index]);
    if (weights_[index]->getWGrad())
      weights_[index]->getWGrad()->reshape(filterPixels_[index] * numFilters_,
                                           filterChannels_[index]);
C
chengduoZH 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  }
  CHECK(inputLayers_.size() == parameters_.size());
  return true;
}

size_t DeConv3DLayer::getSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  // imgSizeH_.clear();
  // imgSizeW_.clear();
  // imgSizeD_.clear();
  outputH_.clear();
  outputW_.clear();
  outputD_.clear();
  N_.clear();
  No_.clear();
  size_t layerSize = 0;
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    // imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
    // imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
    // imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
C
chengduoZH 已提交
61 62 63 64 65 66
    outputW_.push_back(DECONV_OUTPUT_SIZE(
        imgSizeW_[i], stride_[i], padding_[i], filterSize_[i]));
    outputH_.push_back(DECONV_OUTPUT_SIZE(
        imgSizeH_[i], strideY_[i], paddingY_[i], filterSizeY_[i]));
    outputD_.push_back(DECONV_OUTPUT_SIZE(
        imgSizeD_[i], strideZ_[i], paddingZ_[i], filterSizeZ_[i]));
C
chengduoZH 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    No_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
    N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
    CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
    layerSize += No_[i] * numFilters_;
  }
  getOutput().setFrameHeight(outputH_[0]);
  getOutput().setFrameWidth(outputW_[0]);
  getOutput().setFrameDepth(outputD_[0]);
  return layerSize;
}

void DeConv3DLayer::forward(PassType passType) {
  Layer::forward(passType);
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  int outWidth = getSize();
  resetOutput(batchSize, outWidth);
  const MatrixPtr outMat = getOutputValue();

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
C
chengduoZH 已提交
87
    const MatrixPtr &inMat = getInputValue(i);
C
chengduoZH 已提交
88 89 90 91
    int M = M_[i];
    int N = N_[i];
    int K = K_[i];
    MatrixPtr wMat = weights_[i]->getW();
C
chengduoZH 已提交
92
    Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
C
chengduoZH 已提交
93
    for (int n = 0; n < batchSize; ++n) {
C
chengduoZH 已提交
94 95 96 97 98 99 100
      real *inData = inMat->getData() + n * inMat->getStride();
      for (int g = 0; g < groups_[i]; ++g) {
        MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
        MatrixPtr wMatSub = wMat->subMatrix(g * K, K);
        MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
        colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0);
        inData += M * N;
C
chengduoZH 已提交
101
      }
C
chengduoZH 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
      colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(),
                       numFilters_,
                       outputD_[i],
                       outputH_[i],
                       outputW_[i],
                       filterSizeZ_[i],
                       filterSizeY_[i],
                       filterSize_[i],
                       strideZ_[i],
                       strideY_[i],
                       stride_[i],
                       paddingZ_[i],
                       paddingY_[i],
                       padding_[i],
                       1.0,
                       1.0);
C
chengduoZH 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    }
  }
  if (nullptr != this->biasParameter_) {
    REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
    this->addBias();
  }
  forwardActivation();
}

void DeConv3DLayer::backward(const UpdateCallback &callback) {
  backwardActivation();
  int batchSize = getOutputGrad()->getHeight();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases();
    biases_->getParameterPtr()->incUpdate(callback);
  }
C
chengduoZH 已提交
134 135 136 137 138
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    if (weights_[i]->getWGrad() || this->needGradient_) {
      int M = M_[i];
      int N = N_[i];
      int K = K_[i];
C
chengduoZH 已提交
139
      REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
C
chengduoZH 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
      const MatrixPtr &inMat = getInputValue(i);
      for (int n = 0; n < batchSize; ++n) {
        colBuf_->vol2Col(
            getOutputGrad()->getData() + n * getOutputGrad()->getStride(),
            numFilters_,
            outputD_[i],
            outputH_[i],
            outputW_[i],
            filterSizeZ_[i],
            filterSizeY_[i],
            filterSize_[i],
            strideZ_[i],
            strideY_[i],
            stride_[i],
            paddingZ_[i],
            paddingY_[i],
            padding_[i]);
        if (weights_[i]->getWGrad()) {
          real *inData = inMat->getData() + n * inMat->getStride();
          for (int g = 0; g < groups_[i]; ++g) {
            MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
            MatrixPtr wGradMatSub =
                weights_[i]->getWGrad()->subMatrix(g * K, K);
            MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
            wGradMatSub->mul(
                *colBufDataSub, *(inMatSub->getTranspose()), 1.0, 1.0);
            inData += M * N;
          }
C
chengduoZH 已提交
169
        }
C
chengduoZH 已提交
170 171 172 173 174 175 176 177 178 179 180
        if (getInputGrad(i)) {
          real *preGrad =
              getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
          for (int g = 0; g < groups_[i]; ++g) {
            MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K);
            MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K);
            MatrixPtr inGradMatSub =
                Matrix::create(preGrad, M, N, false, useGpu_);
            inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 1.0);
            preGrad += M * N;
          }
C
chengduoZH 已提交
181 182 183
        }
      }
      REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
C
chengduoZH 已提交
184
      weights_[i]->getParameterPtr()->incUpdate(callback);
C
chengduoZH 已提交
185 186 187
    }
  }
}
C
chengduoZH 已提交
188 189
void DeConv3DLayer::bpropWeights(int i) {}
void DeConv3DLayer::bpropData(int i) {}
C
chengduoZH 已提交
190 191

void DeConv3DLayer::bpropBiases() {
C
chengduoZH 已提交
192
  const MatrixPtr &outGradMat = getOutputGrad();
C
chengduoZH 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

  if (this->sharedBiases_) {
    biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
  } else {
    biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
  }
}

void DeConv3DLayer::addBias() {
  MatrixPtr outMat = getOutputValue();
  if (this->sharedBiases_) {
    outMat->addSharedBias(*(biases_->getW()), 1.0f);
  } else {
    outMat->addBias(*(biases_->getW()), 1.0f);
  }
}

}  // namespace paddle