test_imperative_selected_rows.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.nn import Embedding
from paddle.fluid.optimizer import SGDOptimizer
import numpy as np
import paddle.fluid.core as core
24
import paddle
25 26


27
class SimpleNet(paddle.nn.Layer):
Y
Youwei Song 已提交
28 29
    def __init__(self, vocab_size, hidden_size, dtype):
        super(SimpleNet, self).__init__()
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        self.emb = fluid.dygraph.Embedding(
            size=[vocab_size, hidden_size],
            dtype=dtype,
            param_attr='emb.w',
            is_sparse=True)

    def forward(self, input):
        input_emb = self.emb(input)
        return input_emb, self.emb


class TestSimpleNet(unittest.TestCase):
    def test_selectedrows_gradient1(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for dtype in ["float32", "float64"]:
                for sort_sum_gradient in [True, False]:
50 51
                    with paddle.imperative.guard(place):
                        backward_strategy = paddle.imperative.BackwardStrategy()
52
                        backward_strategy.sort_sum_gradient = sort_sum_gradient
53
                        # grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
54

Y
Youwei Song 已提交
55
                        input_word = np.array([[1, 2], [2, 1]]).astype('int64')
56
                        input = paddle.imperative.to_variable(input_word)
57

Y
Youwei Song 已提交
58
                        simplenet = SimpleNet(20, 32, dtype)
59 60
                        adam = SGDOptimizer(
                            learning_rate=0.001,
61 62
                            parameter_list=simplenet.parameters(
                            ))  # grad_clip=grad_clip
63 64
                        input_emb, emb = simplenet(input)

65 66
                        self.assertTrue(emb.weight.gradient() is None)
                        self.assertTrue(input_emb.gradient() is None)
67 68

                        input_emb.backward(backward_strategy)
69
                        adam.minimize(input_emb)
70
                        self.assertTrue(emb.weight.gradient() is not None)
71 72

                        emb.clear_gradients()
73
                        self.assertTrue(emb.weight.gradient() is None)
74 75

                        input_emb.clear_gradient()
76
                        self.assertTrue(input_emb.gradient() is not None)
77 78 79 80 81 82 83 84 85 86 87

    def test_selectedrows_gradient2(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for sort_sum_gradient in [True, False]:
                with fluid.dygraph.guard(place):
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = sort_sum_gradient
88
                    grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
89

Y
Youwei Song 已提交
90
                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
91 92
                    input = to_variable(input_word)

Y
Youwei Song 已提交
93
                    simplenet = SimpleNet(20, 32, "float32")
94 95
                    adam = SGDOptimizer(
                        learning_rate=0.001,
96 97
                        parameter_list=simplenet.parameters(),
                        grad_clip=grad_clip)
98 99
                    input_emb, emb = simplenet(input)

100 101
                    self.assertTrue(emb.weight.gradient() is None)
                    self.assertTrue(input_emb.gradient() is None)
102 103

                    input_emb.backward(backward_strategy)
104
                    adam.minimize(input_emb)
105
                    self.assertTrue(emb.weight.gradient() is not None)
106 107

                    emb.clear_gradients()
108
                    self.assertTrue(emb.weight.gradient() is None)
109 110

                    input_emb.clear_gradient()
111
                    self.assertTrue(input_emb.gradient() is not None)
112 113 114 115


if __name__ == '__main__':
    unittest.main()