test_imperative_selected_rows.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.nn import Embedding
from paddle.fluid.optimizer import SGDOptimizer
import numpy as np
import paddle.fluid.core as core


class SimpleNet(fluid.Layer):
    def __init__(self, name_scope, vocab_size, hidden_size, dtype):
        super(SimpleNet, self).__init__(name_scope)
        self.emb = fluid.dygraph.Embedding(
            self.full_name(),
            size=[vocab_size, hidden_size],
            dtype=dtype,
            param_attr='emb.w',
            is_sparse=True)

    def forward(self, input):
        input_emb = self.emb(input)
        return input_emb, self.emb


class TestSimpleNet(unittest.TestCase):
    def test_selectedrows_gradient1(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for dtype in ["float32", "float64"]:
                for sort_sum_gradient in [True, False]:
                    with fluid.dygraph.guard(place):
                        backward_strategy = fluid.dygraph.BackwardStrategy()
                        backward_strategy.sort_sum_gradient = sort_sum_gradient
                        adam = SGDOptimizer(learning_rate=0.001)
                        # grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(5.0)

                        input_word = np.array(
                            [[[1], [2]], [[2], [1]]]).astype('int64')
                        input = to_variable(input_word)

                        simplenet = SimpleNet("SimpleNet", 20, 32, dtype)
                        input_emb, emb = simplenet(input)

                        try:
                            emb._w.gradient()
                        except ValueError as e:
                            pass
                        try:
                            input_emb.gradient()
                        except ValueError as e:
                            pass

                        input_emb.backward(backward_strategy)
                        adam.minimize(input_emb)  # grad_clip=grad_clip
                        emb._w.gradient()

                        emb.clear_gradients()
                        try:
                            emb._w.gradient()
                        except ValueError as e:
                            pass

                        input_emb.clear_gradient()
                        try:
                            input_emb.gradient()
                        except ValueError as e:
                            pass

    def test_selectedrows_gradient2(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for sort_sum_gradient in [True, False]:
                with fluid.dygraph.guard(place):
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = sort_sum_gradient
                    adam = SGDOptimizer(learning_rate=0.001)
                    grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
                        5.0)

                    input_word = np.array(
                        [[[1], [2]], [[2], [1]]]).astype('int64')
                    input = to_variable(input_word)

                    simplenet = SimpleNet("SimpleNet", 20, 32, "float32")
                    input_emb, emb = simplenet(input)

                    try:
                        emb._w.gradient()
                    except ValueError as e:
                        pass
                    try:
                        input_emb.gradient()
                    except ValueError as e:
                        pass

                    input_emb.backward(backward_strategy)
                    adam.minimize(input_emb, grad_clip=grad_clip)
                    emb._w.gradient()

                    emb.clear_gradients()
                    try:
                        emb._w.gradient()
                    except ValueError as e:
                        pass

                    input_emb.clear_gradient()
                    try:
                        input_emb.gradient()
                    except ValueError as e:
                        pass


if __name__ == '__main__':
    unittest.main()