callbacks.py 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import time
17
import numbers
L
LiuChiachi 已提交
18 19 20
import warnings

import numpy as np
21

22 23
import paddle
from paddle.distributed import ParallelEnv
24
from paddle.utils import try_import
25 26 27

from .progressbar import ProgressBar

Z
zhiboniu 已提交
28
__all__ = []
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def config_callbacks(callbacks=None,
                     model=None,
                     batch_size=None,
                     epochs=None,
                     steps=None,
                     log_freq=2,
                     verbose=2,
                     save_freq=1,
                     save_dir=None,
                     metrics=None,
                     mode='train'):
    cbks = callbacks or []
    cbks = cbks if isinstance(cbks, (list, tuple)) else [cbks]
    if not any(isinstance(k, ProgBarLogger) for k in cbks) and verbose:
        cbks = [ProgBarLogger(log_freq, verbose=verbose)] + cbks

    if not any(isinstance(k, ModelCheckpoint) for k in cbks):
        cbks = cbks + [ModelCheckpoint(save_freq, save_dir)]

L
LiuChiachi 已提交
50 51 52
    for k in cbks:
        if isinstance(k, EarlyStopping):
            k.save_dir = save_dir
53 54 55
    if not any(isinstance(k, LRScheduler) for k in cbks):
        cbks = cbks + [LRScheduler()]

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    cbk_list = CallbackList(cbks)
    cbk_list.set_model(model)
    metrics = metrics or [] if mode != 'test' else []
    params = {
        'batch_size': batch_size,
        'epochs': epochs,
        'steps': steps,
        'verbose': verbose,
        'metrics': metrics,
    }
    cbk_list.set_params(params)
    return cbk_list


class CallbackList(object):
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def __init__(self, callbacks=None):
        # copy
        self.callbacks = [c for c in callbacks]
        self.params = {}
        self.model = None

    def append(self, callback):
        self.callbacks.append(callback)

    def __iter__(self):
        return iter(self.callbacks)

    def set_params(self, params):
        for c in self.callbacks:
            c.set_params(params)

    def set_model(self, model):
        for c in self.callbacks:
            c.set_model(model)

    def _call(self, name, *args):
        for c in self.callbacks:
            func = getattr(c, name)
            func(*args)

    def _check_mode(self, mode):
98 99
        assert mode in ['train', 'eval', 'predict'], \
            'mode should be train, eval or predict'
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    def on_begin(self, mode, logs=None):
        self._check_mode(mode)
        name = 'on_{}_begin'.format(mode)
        self._call(name, logs)

    def on_end(self, mode, logs=None):
        self._check_mode(mode)
        name = 'on_{}_end'.format(mode)
        self._call(name, logs)

    def on_epoch_begin(self, epoch=None, logs=None):
        self._call('on_epoch_begin', epoch, logs)

    def on_epoch_end(self, epoch=None, logs=None):
        self._call('on_epoch_end', epoch, logs)

    def on_batch_begin(self, mode, step=None, logs=None):
        self._check_mode(mode)
        name = 'on_{}_batch_begin'.format(mode)
        self._call(name, step, logs)

    def on_batch_end(self, mode, step=None, logs=None):
        self._check_mode(mode)
        name = 'on_{}_batch_end'.format(mode)
        self._call(name, step, logs)


class Callback(object):
    """
130 131
    Base class used to build new callbacks. And new callbacks could also
    terminate training by setting `model.stop_training=True`.
132 133 134 135 136

    Examples:

        .. code-block:: python
            
137
            import paddle
138 139

            # build a simple model checkpoint callback
140
            class ModelCheckpoint(paddle.callbacks.Callback):
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
                def __init__(self, save_freq=1, save_dir=None):
                    self.save_freq = save_freq
                    self.save_dir = save_dir

                def on_epoch_end(self, epoch, logs=None):
                    if self.model is not None and epoch % self.save_freq == 0:
                        path = '{}/{}'.format(self.save_dir, epoch)
                        print('save checkpoint at {}'.format(path))
                        self.model.save(path)

    """

    def __init__(self):
        self.model = None
        self.params = {}

    def set_params(self, params):
        """
        Set parameters, which is dict. The keys contain:

          - 'batch_size': an integer. Number of samples per batch.
          - 'epochs': an integer. Number of epochs.
          - 'steps': an integer. Number of steps of one epoch.
164 165
          - 'verbose': an integer. Verbose mode is 0, 1 or 2. 0 = silent, 1 = progress bar, 2 = one line per epoch.
          - 'metrics': a list of str. Names of metrics, including 'loss' and the names of paddle.metric.Metric.
166 167 168 169
        """
        self.params = params

    def set_model(self, model):
170
        """model is instance of paddle.Model.
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        """
        self.model = model

    def on_train_begin(self, logs=None):
        """Called at the start of training.

        Args:
            logs (dict): The logs is a dict or None.
        """

    def on_train_end(self, logs=None):
        """Called at the end of training.

        Args:
            logs (dict): The logs is a dict or None. The keys of logs
186
                passed by paddle.Model contains 'loss', metric names and
187 188 189 190 191 192 193 194
                `batch_size`.
        """

    def on_eval_begin(self, logs=None):
        """Called at the start of evaluation.

        Args:
            logs (dict): The logs is a dict or None. The keys of logs
195
                passed by paddle.Model contains 'steps' and 'metrics',
196 197
                The `steps` is number of total steps of validation dataset.
                The `metrics` is a list of str including 'loss' and the names
198
                of paddle.metric.Metric.
199 200 201 202 203 204 205
        """

    def on_eval_end(self, logs=None):
        """Called at the end of evaluation.

        Args:
            logs (dict): The logs is a dict or None. The `logs` passed by
206
                paddle.Model is a dict contains 'loss', metrics and 'batch_size'
207 208 209
                of last batch of validation dataset.
        """

210
    def on_predict_begin(self, logs=None):
211 212 213 214 215 216
        """Called at the beginning of predict.

        Args:
            logs (dict): The logs is a dict or None.
        """

217
    def on_predict_end(self, logs=None):
218 219 220 221 222 223 224 225 226 227 228 229
        """Called at the end of predict.

        Args:
            logs (dict): The logs is a dict or None.
        """

    def on_epoch_begin(self, epoch, logs=None):
        """Called at the beginning of each epoch.

        Args:
            epoch (int): The index of epoch.
            logs (dict): The logs is a dict or None. The `logs` passed by
230
                paddle.Model is None.
231 232 233 234 235 236 237 238
        """

    def on_epoch_end(self, epoch, logs=None):
        """Called at the end of each epoch.

        Args:
            epoch (int): The index of epoch.
            logs (dict): The logs is a dict or None. The `logs` passed by
239
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
240 241 242 243 244 245 246 247 248
                of last batch.
        """

    def on_train_batch_begin(self, step, logs=None):
        """Called at the beginning of each batch in training.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
249
                paddle.Model is empty.
250 251 252 253 254 255 256 257
        """

    def on_train_batch_end(self, step, logs=None):
        """Called at the end of each batch in training.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
258
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
259 260 261 262 263 264 265 266 267
                of current batch.
        """

    def on_eval_batch_begin(self, step, logs=None):
        """Called at the beginning of each batch in evaluation.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
268
                paddle.Model is empty.
269 270 271 272 273 274 275 276
        """

    def on_eval_batch_end(self, step, logs=None):
        """Called at the end of each batch in evaluation.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
277
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
278 279 280
                of current batch.
        """

281
    def on_predict_batch_begin(self, step, logs=None):
282 283 284 285 286 287 288
        """Called at the beginning of each batch in predict.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None.
        """

289
    def on_predict_batch_end(self, step, logs=None):
290 291 292 293 294 295 296 297 298
        """Called at the end of each batch in predict.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None.
        """


class ProgBarLogger(Callback):
299
    """
300 301 302
    Logger callback function to print loss and metrics to stdout. It supports
    silent mode (not print), progress bar or one line per each printing,
    see arguments for more detailed.
303

304
    Args:
305 306
        log_freq (int): The frequency, in number of steps,
            the logs such as loss, metrics are printed. Default: 1.
307
        verbose (int): The verbosity mode, should be 0, 1, or 2.
308
            0 = silent, 1 = progress bar, 2 = one line each printing, 3 = 2 +
309 310
            time counter, such as average reader cost, samples per second. 
            Default: 2.
311 312 313 314

    Examples:
        .. code-block:: python

315
            import paddle
316
            import paddle.vision.transforms as T
317
            from paddle.vision.datasets import MNIST
318
            from paddle.static import InputSpec
319

320 321
            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
322

323 324 325 326
            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
327
            train_dataset = MNIST(mode='train', transform=transform)
328

329
            lenet = paddle.vision.models.LeNet()
L
LielinJiang 已提交
330
            model = paddle.Model(lenet,
331
                inputs, labels)
332

L
LielinJiang 已提交
333
            optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
334
            model.prepare(optimizer=optim,
335 336
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
337

338
            callback = paddle.callbacks.ProgBarLogger(log_freq=10)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            model.fit(train_dataset, batch_size=64, callbacks=callback)
    """

    def __init__(self, log_freq=1, verbose=2):
        self.epochs = None
        self.steps = None
        self.progbar = None
        self.verbose = verbose
        self.log_freq = log_freq

    def _is_print(self):
        return self.verbose and ParallelEnv().local_rank == 0

    def on_train_begin(self, logs=None):
        self.epochs = self.params['epochs']
        assert self.epochs
        self.train_metrics = self.params['metrics']
        assert self.train_metrics

358 359 360 361 362 363 364 365
        self._train_timer = {
            'data_time': 0,
            'batch_time': 0,
            'count': 0,
            'samples': 0,
        }
        if self._is_print():
            print(
J
Jiaqi Liu 已提交
366
                "The loss value printed in the log is the current step, and the metric is the average value of previous steps."
367 368
            )

369 370 371 372 373 374 375 376
    def on_epoch_begin(self, epoch=None, logs=None):
        self.steps = self.params['steps']
        self.epoch = epoch
        self.train_step = 0
        if self.epochs and self._is_print():
            print('Epoch %d/%d' % (epoch + 1, self.epochs))
        self.train_progbar = ProgressBar(num=self.steps, verbose=self.verbose)

377 378
        self._train_timer['batch_start_time'] = time.time()

379 380 381 382 383 384 385 386 387 388
    def _updates(self, logs, mode):
        values = []
        metrics = getattr(self, '%s_metrics' % (mode))
        progbar = getattr(self, '%s_progbar' % (mode))
        steps = getattr(self, '%s_step' % (mode))

        for k in metrics:
            if k in logs:
                values.append((k, logs[k]))

389 390 391 392 393 394 395 396 397 398
        if self.verbose == 3 and hasattr(self, '_%s_timer' % (mode)):
            timer = getattr(self, '_%s_timer' % (mode))
            cnt = timer['count'] if timer['count'] > 0 else 1.0
            samples = timer['samples'] if timer['samples'] > 0 else 1.0
            values.append(
                ('avg_reader_cost', "%.5f sec" % (timer['data_time'] / cnt)))
            values.append(
                ('avg_batch_cost', "%.5f sec" % (timer['batch_time'] / cnt)))
            values.append(
                ('ips', "%.5f samples/sec" %
L
LielinJiang 已提交
399
                 (samples / (timer['data_time'] + timer['batch_time']))))
400 401 402 403
            timer['count'] = 0
            timer['samples'] = 0
            timer['data_time'] = 0.
            timer['batch_time'] = 0.
404

405 406
        progbar.update(steps, values)

407 408 409 410 411 412
    def on_train_batch_begin(self, step, logs=None):
        self._train_timer['batch_data_end_time'] = time.time()
        self._train_timer['data_time'] += (
            self._train_timer['batch_data_end_time'] -
            self._train_timer['batch_start_time'])

413 414 415 416
    def on_train_batch_end(self, step, logs=None):
        logs = logs or {}
        self.train_step += 1

417 418 419 420 421
        self._train_timer['batch_time'] += (
            time.time() - self._train_timer['batch_data_end_time'])
        self._train_timer['count'] += 1
        samples = logs.get('batch_size', 1)
        self._train_timer['samples'] += samples
422 423 424
        if self._is_print() and self.train_step % self.log_freq == 0:
            if self.steps is None or self.train_step < self.steps:
                self._updates(logs, 'train')
425
        self._train_timer['batch_start_time'] = time.time()
426 427 428 429 430 431 432 433 434 435 436 437

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        if self._is_print() and (self.steps is not None):
            self._updates(logs, 'train')

    def on_eval_begin(self, logs=None):
        self.eval_steps = logs.get('steps', None)
        self.eval_metrics = logs.get('metrics', [])
        self.eval_step = 0
        self.evaled_samples = 0

438 439 440 441 442 443 444
        self._eval_timer = {
            'data_time': 0,
            'batch_time': 0,
            'count': 0,
            'samples': 0,
        }

445 446
        self.eval_progbar = ProgressBar(num=self.eval_steps,
                                        verbose=self.verbose)
447 448
        if self._is_print():
            print('Eval begin...')
449 450 451 452 453 454 455 456

        self._eval_timer['batch_start_time'] = time.time()

    def on_eval_batch_begin(self, step, logs=None):
        self._eval_timer['batch_data_end_time'] = time.time()
        self._eval_timer['data_time'] += (
            self._eval_timer['batch_data_end_time'] -
            self._eval_timer['batch_start_time'])
457 458 459 460 461 462 463

    def on_eval_batch_end(self, step, logs=None):
        logs = logs or {}
        self.eval_step += 1
        samples = logs.get('batch_size', 1)
        self.evaled_samples += samples

464 465 466 467 468 469
        self._eval_timer['batch_time'] += (
            time.time() - self._eval_timer['batch_data_end_time'])
        self._eval_timer['count'] += 1
        samples = logs.get('batch_size', 1)
        self._eval_timer['samples'] += samples

470 471 472 473
        if self._is_print() and self.eval_step % self.log_freq == 0:
            if self.eval_steps is None or self.eval_step < self.eval_steps:
                self._updates(logs, 'eval')

474 475 476
        self._eval_timer['batch_start_time'] = time.time()

    def on_predict_begin(self, logs=None):
477 478 479 480
        self.test_steps = logs.get('steps', None)
        self.test_metrics = logs.get('metrics', [])
        self.test_step = 0
        self.tested_samples = 0
481 482 483 484 485 486 487 488

        self._test_timer = {
            'data_time': 0,
            'batch_time': 0,
            'count': 0,
            'samples': 0,
        }

489 490
        self.test_progbar = ProgressBar(num=self.test_steps,
                                        verbose=self.verbose)
491 492 493
        if self._is_print():
            print('Predict begin...')

494 495 496 497 498 499 500 501 502
        self._test_timer['batch_start_time'] = time.time()

    def on_predict_batch_begin(self, step, logs=None):
        self._test_timer['batch_data_end_time'] = time.time()
        self._test_timer['data_time'] += (
            self._test_timer['batch_data_end_time'] -
            self._test_timer['batch_start_time'])

    def on_predict_batch_end(self, step, logs=None):
503 504 505 506 507
        logs = logs or {}
        self.test_step += 1
        samples = logs.get('batch_size', 1)
        self.tested_samples += samples

508 509 510 511 512 513
        self._test_timer['batch_time'] += (
            time.time() - self._test_timer['batch_data_end_time'])
        self._test_timer['count'] += 1
        samples = logs.get('batch_size', 1)
        self._test_timer['samples'] += samples

514 515 516 517
        if self.test_step % self.log_freq == 0 and self._is_print():
            if self.test_steps is None or self.test_step < self.test_steps:
                self._updates(logs, 'test')

518 519
        self._test_timer['batch_start_time'] = time.time()

520 521 522 523 524 525
    def on_eval_end(self, logs=None):
        logs = logs or {}
        if self._is_print() and (self.eval_steps is not None):
            self._updates(logs, 'eval')
            print('Eval samples: %d' % (self.evaled_samples))

526
    def on_predict_end(self, logs=None):
527 528 529 530 531 532 533 534
        logs = logs or {}
        if self._is_print():
            if self.test_step % self.log_freq != 0 or self.verbose == 1:
                self._updates(logs, 'test')
            print('Predict samples: %d' % (self.tested_samples))


class ModelCheckpoint(Callback):
535
    """
536 537 538
    Model checkpoint callback function to save model weights and optimizer
    state during training in conjunction with model.fit(). Currently,
    ModelCheckpoint only supports saving after a fixed number of epochs.
539

540
    Args:
541 542
        save_freq(int): The frequency, in number of epochs, the model checkpoint
            are saved. Default: 1.
543
        save_dir(str|None): The directory to save checkpoint during training.
544
            If None, will not save checkpoint. Default: None.
545 546 547 548

    Examples:
        .. code-block:: python

549
            import paddle
550
            import paddle.vision.transforms as T
551
            from paddle.vision.datasets import MNIST
552
            from paddle.static import InputSpec
553

554 555
            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
556

557 558 559 560
            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
561
            train_dataset = MNIST(mode='train', transform=transform)
562

563
            lenet = paddle.vision.models.LeNet()
L
LielinJiang 已提交
564
            model = paddle.Model(lenet,
565
                inputs, labels)
566

L
LielinJiang 已提交
567
            optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
568
            model.prepare(optimizer=optim,
569 570
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
571

572
            callback = paddle.callbacks.ModelCheckpoint(save_dir='./temp')
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
            model.fit(train_dataset, batch_size=64, callbacks=callback)
    """

    def __init__(self, save_freq=1, save_dir=None):
        self.save_freq = save_freq
        self.save_dir = save_dir

    def on_epoch_begin(self, epoch=None, logs=None):
        self.epoch = epoch

    def _is_save(self):
        return self.model and self.save_dir and ParallelEnv().local_rank == 0

    def on_epoch_end(self, epoch, logs=None):
        if self._is_save() and self.epoch % self.save_freq == 0:
            path = '{}/{}'.format(self.save_dir, epoch)
589
            print('save checkpoint at {}'.format(os.path.abspath(path)))
590 591 592 593 594
            self.model.save(path)

    def on_train_end(self, logs=None):
        if self._is_save():
            path = '{}/final'.format(self.save_dir)
595
            print('save checkpoint at {}'.format(os.path.abspath(path)))
596
            self.model.save(path)
597 598


599 600
class LRScheduler(Callback):
    """Lr scheduler callback function
S
sunzhongkai588 已提交
601
    
602
    Args:
S
sunzhongkai588 已提交
603
        by_step(bool, optional): whether to update learning rate scheduler
604
            by step. Default: True.
S
sunzhongkai588 已提交
605
        by_epoch(bool, optional): whether to update learning rate scheduler
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
            by epoch. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)

624
            lenet = paddle.vision.models.LeNet()
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
            model = paddle.Model(lenet,
                inputs, labels)

            base_lr = 1e-3
            boundaries = [5, 8]
            wamup_steps = 4
            
            def make_optimizer(parameters=None):
                momentum = 0.9
                weight_decay = 5e-4
                values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
                learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                    boundaries=boundaries, values=values)
                learning_rate = paddle.optimizer.lr.LinearWarmup(
                    learning_rate=learning_rate,
640
                    warmup_steps=wamup_steps,
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                    start_lr=base_lr / 5.,
                    end_lr=base_lr,
                    verbose=True)
                optimizer = paddle.optimizer.Momentum(
                    learning_rate=learning_rate,
                    weight_decay=weight_decay,
                    momentum=momentum,
                    parameters=parameters)
                return optimizer
                
            optim = make_optimizer(parameters=lenet.parameters())
            model.prepare(optimizer=optim,
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())

            # if LRScheduler callback not set, an instance LRScheduler update by step 
            # will be created auto.
            model.fit(train_dataset, batch_size=64)

            # create a learning rate scheduler update by epoch
            callback = paddle.callbacks.LRScheduler(by_step=False, by_epoch=True)
            model.fit(train_dataset, batch_size=64, callbacks=callback)
    """

    def __init__(self, by_step=True, by_epoch=False):
        if by_step and by_epoch:
            raise ValueError(
                "by_step option is mutually exclusive with by_epoch")

        self.by_step = by_step
        self.by_epoch = by_epoch

    def on_epoch_end(self, epoch, logs=None):
        if self.by_epoch:
            if self.model._optimizer and \
                hasattr(self.model._optimizer, '_learning_rate') and \
                isinstance(self.model._optimizer._learning_rate,
                           paddle.optimizer.lr.LRScheduler):
                self.model._optimizer._learning_rate.step()

    def on_train_batch_end(self, step, logs=None):
        if self.by_step:
            if self.model._optimizer and \
                hasattr(self.model._optimizer, '_learning_rate') and \
                isinstance(self.model._optimizer._learning_rate,
                           paddle.optimizer.lr.LRScheduler):
                self.model._optimizer._learning_rate.step()


L
LiuChiachi 已提交
690
class EarlyStopping(Callback):
691 692
    """Stop training when the given monitor stopped improving during evaluation
    by setting `model.stop_training=True`.
S
sunzhongkai588 已提交
693
    
L
LiuChiachi 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
    Args:
        monitor(str): Quantity to be monitored. Default: 'loss'.
        mode(str|None): Mode should be one of 'auto', 'min' or 'max'. In 'min'
            mode, training will stop until monitored quantity stops decreasing.
            In 'max' mode, training will stop until monitored quantity stops
            increasing. In 'auto' mode, exact mode can be inferred by the name
            of monitor. If 'acc' in monitor, the mode will be considered as
            'max', otherwise the mode will be set to 'min'. Default: 'auto'.
        patience(int): Number of epochs with no improvement after which
            training will be stopped. Default: 0.
        verbose(int): The verbosity mode, should be 0 or 1. When verbose=0,
            logs will not be printed. When verbose=1, logs will be printed.
            Default: 1.
        min_delta(int|float): The minimum change of monitored quantity. If
            the change is less than min_delta, model could be considered as no
            improvement. Default: 0.
        baseline(int|float|None): Baseline value for the monitored quantity.
            Training will stop if the model doesn't show improvement over the
            baseline. Default: None.
        save_best_model(bool): Whether to save best model. Default: True.
        
    Examples:
        .. code-block:: python

            import paddle
            from paddle import Model
            from paddle.static import InputSpec
            from paddle.vision.models import LeNet
            from paddle.vision.datasets import MNIST
            from paddle.metric import Accuracy
724
            from paddle.nn import CrossEntropyLoss
L
LiuChiachi 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
            import paddle.vision.transforms as T

            device = paddle.set_device('cpu')
            sample_num = 200
            save_dir = './best_model_checkpoint'
            transform = T.Compose(
                [T.Transpose(), T.Normalize([127.5], [127.5])])
            train_dataset = MNIST(mode='train', transform=transform)
            val_dataset = MNIST(mode='test', transform=transform)
            net = LeNet()
            optim = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=net.parameters())

            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]

            model = Model(net, inputs=inputs, labels=labels)
            model.prepare(
                optim,
                loss=CrossEntropyLoss(reduction="sum"),
                metrics=[Accuracy()])
            callbacks = paddle.callbacks.EarlyStopping(
                'loss',
                mode='min',
                patience=1,
                verbose=1,
                min_delta=0,
                baseline=None,
                save_best_model=True)
            model.fit(train_dataset,
                      val_dataset,
                      batch_size=64,
                      log_freq=200,
                      save_freq=10,
                      save_dir=save_dir,
                      epochs=20,
                      callbacks=[callbacks])
    """

    def __init__(self,
                 monitor='loss',
                 mode='auto',
                 patience=0,
                 verbose=1,
                 min_delta=0,
                 baseline=None,
                 save_best_model=True):
        super(EarlyStopping, self).__init__()
        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.baseline = baseline
        self.min_delta = abs(min_delta)
        self.wait_epoch = 0
        self.best_weights = None
        self.stopped_epoch = 0
        self.save_best_model = save_best_model
782 783
        # The value of `save_dir` is set in function `config_callbacks`
        self.save_dir = None
L
LiuChiachi 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
        if mode not in ['auto', 'min', 'max']:
            warnings.warn('EarlyStopping mode %s is unknown, '
                          'fallback to auto mode.' % mode)
            mode = 'auto'
        if mode == 'min':
            self.monitor_op = np.less
        elif mode == 'max':
            self.monitor_op = np.greater
        # When mode == 'auto', the mode should be inferred by `self.monitor`
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
            else:
                self.monitor_op = np.less

        if self.monitor_op == np.greater:
            self.min_delta *= 1
        else:
            self.min_delta *= -1

    def on_train_begin(self, logs=None):
        self.wait_epoch = 0
        if self.baseline is not None:
            self.best_value = self.baseline
        else:
            self.best_value = np.inf if self.monitor_op == np.less else -np.inf
            self.best_weights = None

    def on_eval_end(self, logs=None):
        if logs is None or self.monitor not in logs:
            warnings.warn(
                'Monitor of EarlyStopping should be loss or metric name.')
            return
        current = logs[self.monitor]
        if isinstance(current, (list, tuple)):
            current = current[0]
        elif isinstance(current, numbers.Number):
            current = current
        else:
            return

        if self.monitor_op(current - self.min_delta, self.best_value):
            self.best_value = current
            self.wait_epoch = 0
            if self.save_best_model and self.save_dir is not None:
                path = os.path.join(self.save_dir, 'best_model')
                self.model.save(path)
        else:
            self.wait_epoch += 1
        if self.wait_epoch >= self.patience:
            self.model.stop_training = True
            if self.verbose > 0:
                print('Epoch %d: Early stopping.' % (self.stopped_epoch + 1))
                if self.save_best_model and self.save_dir is not None:
                    print('Best checkpoint has been saved at %s' %
                          (os.path.abspath(
                              os.path.join(self.save_dir, 'best_model'))))
        self.stopped_epoch += 1


844
class VisualDL(Callback):
845 846 847
    """
    VisualDL callback function.

848 849 850 851 852 853 854
    Args:
        log_dir (str): The directory to save visualdl log file.

    Examples:
        .. code-block:: python

            import paddle
855
            import paddle.vision.transforms as T
856 857 858 859 860
            from paddle.static import InputSpec

            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]

861 862 863 864 865 866
            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            eval_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
867

868
            net = paddle.vision.models.LeNet()
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
            model = paddle.Model(net, inputs, labels)

            optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
            model.prepare(optimizer=optim,
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
            
            ## uncomment following lines to fit model with visualdl callback function
            # callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
            # model.fit(train_dataset, eval_dataset, batch_size=64, callbacks=callback)

    """

    def __init__(self, log_dir):
        self.log_dir = log_dir
        self.epochs = None
        self.steps = None
        self.epoch = 0

    def _is_write(self):
        return ParallelEnv().local_rank == 0

    def on_train_begin(self, logs=None):
        self.epochs = self.params['epochs']
        assert self.epochs
        self.train_metrics = self.params['metrics']
        assert self.train_metrics
        self._is_fit = True
        self.train_step = 0

    def on_epoch_begin(self, epoch=None, logs=None):
        self.steps = self.params['steps']
        self.epoch = epoch

    def _updates(self, logs, mode):
        if not self._is_write():
            return
        if not hasattr(self, 'writer'):
            visualdl = try_import('visualdl')
            self.writer = visualdl.LogWriter(self.log_dir)

        metrics = getattr(self, '%s_metrics' % (mode))
        current_step = getattr(self, '%s_step' % (mode))

        if mode == 'train':
            total_step = current_step
        else:
            total_step = self.epoch

        for k in metrics:
            if k in logs:
                temp_tag = mode + '/' + k

                if isinstance(logs[k], (list, tuple)):
                    temp_value = logs[k][0]
                elif isinstance(logs[k], numbers.Number):
                    temp_value = logs[k]
                else:
                    continue

929 930 931
                self.writer.add_scalar(tag=temp_tag,
                                       step=total_step,
                                       value=temp_value)
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

    def on_train_batch_end(self, step, logs=None):
        logs = logs or {}
        self.train_step += 1

        if self._is_write():
            self._updates(logs, 'train')

    def on_eval_begin(self, logs=None):
        self.eval_steps = logs.get('steps', None)
        self.eval_metrics = logs.get('metrics', [])
        self.eval_step = 0
        self.evaled_samples = 0

    def on_train_end(self, logs=None):
        if hasattr(self, 'writer'):
            self.writer.close()
            delattr(self, 'writer')

    def on_eval_end(self, logs=None):
        if self._is_write():
            self._updates(logs, 'eval')

            if (not hasattr(self, '_is_fit')) and hasattr(self, 'writer'):
                self.writer.close()
                delattr(self, 'writer')
L
LielinJiang 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061


class ReduceLROnPlateau(Callback):
    """Reduce learning rate when a metric of evaluation has stopped improving.
    Models often benefit from reducing the learning rate by a factor
    of 2-10 once learning stagnates. This callback monitors a
    quantity and if no improvement is seen for a 'patience' number
    of epochs, the learning rate is reduced.
    
    Args:
        monitor(str, optional): Quantity to be monitored. Default: 'loss'.
        factor(float, optional): factor by which the learning rate will be reduced.
            `new_lr = lr * factor`. Default: 0.1.
        patience(int, optional): Number of epochs with no improvement after which
            learning rate will be reduced. Default: 10.
        verbose(int, optional): The verbosity mode. 0: quiet, 1: update messages.
            Default: 1.
        mode(str, optional): one of `{'auto', 'min', 'max'}`. In `'min'` mode,
            the learning rate will be reduced when the quantity monitored has 
            stopped decreasing. In 'max' mode, learning rate will reduce until 
            monitored quantity stops increasing. In 'auto' mode, exact mode 
            can be inferred by the name of monitor. If 'acc' in monitor, the 
            mode will be considered as 'max', otherwise the mode will be set 
            to 'min'. Default: 'auto'.
        min_delta(int|float, optional): threshold for measuring the new optimum, 
            to only focus on significant changes. Default: 0.
        cooldown(int, optional): number of epochs to wait before resuming normal operation after
            lr has been reduced. Default: 0.
        min_lr(float, optional): lower bound on the learning rate. Default: 0.
  
    Examples:
          .. code-block:: python
  
              import paddle
              from paddle import Model
              from paddle.static import InputSpec
              from paddle.vision.models import LeNet
              from paddle.vision.datasets import MNIST
              from paddle.metric import Accuracy
              from paddle.nn.layer.loss import CrossEntropyLoss
              import paddle.vision.transforms as T  
              sample_num = 200
              transform = T.Compose(
                  [T.Transpose(), T.Normalize([127.5], [127.5])])
              train_dataset = MNIST(mode='train', transform=transform)
              val_dataset = MNIST(mode='test', transform=transform)
              net = LeNet()
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=net.parameters())  
              inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
              labels = [InputSpec([None, 1], 'int64', 'label')]  
              model = Model(net, inputs=inputs, labels=labels)
              model.prepare(
                  optim,
                  loss=CrossEntropyLoss(),
                  metrics=[Accuracy()])  
              callbacks = paddle.callbacks.ReduceLROnPlateau(patience=3, verbose=1)
              model.fit(train_dataset,
                          val_dataset,
                          batch_size=64,
                          log_freq=200,
                          save_freq=10,
                          epochs=20,
                          callbacks=[callbacks])
  
    """

    def __init__(self,
                 monitor='loss',
                 factor=0.1,
                 patience=10,
                 verbose=1,
                 mode='auto',
                 min_delta=1e-4,
                 cooldown=0,
                 min_lr=0):
        super(ReduceLROnPlateau, self).__init__()

        self.monitor = monitor
        if factor >= 1.0:
            raise ValueError('ReduceLROnPlateau '
                             'does not support a factor >= 1.0.')

        self.factor = factor
        self.min_lr = min_lr
        self.min_delta = min_delta
        self.patience = patience
        self.verbose = verbose
        self.cooldown = cooldown
        self.cooldown_counter = 0  # Cooldown counter.
        self.wait = 0
        self.best = 0
        self.mode = mode
        self.monitor_op = None
        self.epoch = 0
        self._reset()

    def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning rate reduction mode %s is unknown, '
                          'fallback to auto mode.' % self.mode)
            self.mode = 'auto'
1062 1063
        if (self.mode == 'min'
                or (self.mode == 'auto' and 'acc' not in self.monitor)):
L
LielinJiang 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
            self.monitor_op = lambda a, b: np.less(a, b - self.min_delta)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0

    def on_train_begin(self, logs=None):
        self._reset()

    def on_eval_end(self, logs=None):
        if logs is None or self.monitor not in logs:
            warnings.warn(
                'Monitor of ReduceLROnPlateau should be loss or metric name.')
            return
        else:
            try:
                lr = self.model._optimizer._learning_rate
                if not isinstance(lr, float):
                    warnings.warn(
                        'Expected learning_rate be float, bug got {}.'.format(
                            type(lr)))
                    return
            except Exception as e:
                warnings.warn(
1090 1091
                    'There are something wrong when get learning_rate from optimizer: {}.'
                    .format(e))
L
LielinJiang 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
                return

        current = logs[self.monitor]
        if isinstance(current, (list, tuple)):
            current = current[0]
        elif isinstance(current, numbers.Number):
            current = current
        else:
            return

        if self.in_cooldown():
            self.cooldown_counter -= 1
            self.wait = 0

        if self.monitor_op(current, self.best):
            self.best = current
            self.wait = 0
        elif not self.in_cooldown():
            self.wait += 1
            if self.wait >= self.patience:
                old_lr = self.model._optimizer.get_lr()
                if old_lr > np.float32(self.min_lr):
                    new_lr = old_lr * self.factor
                    new_lr = max(new_lr, self.min_lr)
                    self.model._optimizer._learning_rate = new_lr
                    if self.verbose > 0 and ParallelEnv().local_rank == 0:
                        print('\nEpoch %d: ReduceLROnPlateau reducing learning '
                              'rate to %s.' % (self.epoch + 1, new_lr))
                    self.cooldown_counter = self.cooldown
                    self.wait = 0
        self.epoch += 1

    def in_cooldown(self):
        return self.cooldown_counter > 0