callbacks.py 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import numbers
17

18 19
import paddle
from paddle.distributed import ParallelEnv
20
from paddle.utils import try_import
21 22 23

from .progressbar import ProgressBar

24 25 26
__all__ = [
    'Callback', 'ProgBarLogger', 'ModelCheckpoint', 'VisualDL', 'LRScheduler'
]
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


def config_callbacks(callbacks=None,
                     model=None,
                     batch_size=None,
                     epochs=None,
                     steps=None,
                     log_freq=2,
                     verbose=2,
                     save_freq=1,
                     save_dir=None,
                     metrics=None,
                     mode='train'):
    cbks = callbacks or []
    cbks = cbks if isinstance(cbks, (list, tuple)) else [cbks]
    if not any(isinstance(k, ProgBarLogger) for k in cbks) and verbose:
        cbks = [ProgBarLogger(log_freq, verbose=verbose)] + cbks

    if not any(isinstance(k, ModelCheckpoint) for k in cbks):
        cbks = cbks + [ModelCheckpoint(save_freq, save_dir)]

48 49 50
    if not any(isinstance(k, LRScheduler) for k in cbks):
        cbks = cbks + [LRScheduler()]

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    cbk_list = CallbackList(cbks)
    cbk_list.set_model(model)
    metrics = metrics or [] if mode != 'test' else []
    params = {
        'batch_size': batch_size,
        'epochs': epochs,
        'steps': steps,
        'verbose': verbose,
        'metrics': metrics,
    }
    cbk_list.set_params(params)
    return cbk_list


class CallbackList(object):
    def __init__(self, callbacks=None):
        # copy
        self.callbacks = [c for c in callbacks]
        self.params = {}
        self.model = None

    def append(self, callback):
        self.callbacks.append(callback)

    def __iter__(self):
        return iter(self.callbacks)

    def set_params(self, params):
        for c in self.callbacks:
            c.set_params(params)

    def set_model(self, model):
        for c in self.callbacks:
            c.set_model(model)

    def _call(self, name, *args):
        for c in self.callbacks:
            func = getattr(c, name)
            func(*args)

    def _check_mode(self, mode):
        assert mode in ['train', 'eval', 'test'], \
            'mode should be train, eval or test'

    def on_begin(self, mode, logs=None):
        self._check_mode(mode)
        name = 'on_{}_begin'.format(mode)
        self._call(name, logs)

    def on_end(self, mode, logs=None):
        self._check_mode(mode)
        name = 'on_{}_end'.format(mode)
        self._call(name, logs)

    def on_epoch_begin(self, epoch=None, logs=None):
        self._call('on_epoch_begin', epoch, logs)

    def on_epoch_end(self, epoch=None, logs=None):
        self._call('on_epoch_end', epoch, logs)

    def on_batch_begin(self, mode, step=None, logs=None):
        self._check_mode(mode)
        name = 'on_{}_batch_begin'.format(mode)
        self._call(name, step, logs)

    def on_batch_end(self, mode, step=None, logs=None):
        self._check_mode(mode)
        name = 'on_{}_batch_end'.format(mode)
        self._call(name, step, logs)


class Callback(object):
    """
    Base class used to build new callbacks.

    Examples:

        .. code-block:: python
            
130
            import paddle
131 132

            # build a simple model checkpoint callback
133
            class ModelCheckpoint(paddle.callbacks.Callback):
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                def __init__(self, save_freq=1, save_dir=None):
                    self.save_freq = save_freq
                    self.save_dir = save_dir

                def on_epoch_end(self, epoch, logs=None):
                    if self.model is not None and epoch % self.save_freq == 0:
                        path = '{}/{}'.format(self.save_dir, epoch)
                        print('save checkpoint at {}'.format(path))
                        self.model.save(path)

    """

    def __init__(self):
        self.model = None
        self.params = {}

    def set_params(self, params):
        """
        Set parameters, which is dict. The keys contain:

          - 'batch_size': an integer. Number of samples per batch.
          - 'epochs': an integer. Number of epochs.
          - 'steps': an integer. Number of steps of one epoch.
          - 'verbose': an integer. Verbose mode is 0, 1 or 2.
             0 = silent, 1 = progress bar, 2 = one line per epoch.
          - 'metrics': a list of str. Names of metrics, including 'loss'
160
              and the names of paddle.metric.Metric.
161 162 163 164
        """
        self.params = params

    def set_model(self, model):
165
        """model is instance of paddle.Model.
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        """
        self.model = model

    def on_train_begin(self, logs=None):
        """Called at the start of training.

        Args:
            logs (dict): The logs is a dict or None.
        """

    def on_train_end(self, logs=None):
        """Called at the end of training.

        Args:
            logs (dict): The logs is a dict or None. The keys of logs
181
                passed by paddle.Model contains 'loss', metric names and
182 183 184 185 186 187 188 189
                `batch_size`.
        """

    def on_eval_begin(self, logs=None):
        """Called at the start of evaluation.

        Args:
            logs (dict): The logs is a dict or None. The keys of logs
190
                passed by paddle.Model contains 'steps' and 'metrics',
191 192
                The `steps` is number of total steps of validation dataset.
                The `metrics` is a list of str including 'loss' and the names
193
                of paddle.metric.Metric.
194 195 196 197 198 199 200
        """

    def on_eval_end(self, logs=None):
        """Called at the end of evaluation.

        Args:
            logs (dict): The logs is a dict or None. The `logs` passed by
201
                paddle.Model is a dict contains 'loss', metrics and 'batch_size'
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                of last batch of validation dataset.
        """

    def on_test_begin(self, logs=None):
        """Called at the beginning of predict.

        Args:
            logs (dict): The logs is a dict or None.
        """

    def on_test_end(self, logs=None):
        """Called at the end of predict.

        Args:
            logs (dict): The logs is a dict or None.
        """

    def on_epoch_begin(self, epoch, logs=None):
        """Called at the beginning of each epoch.

        Args:
            epoch (int): The index of epoch.
            logs (dict): The logs is a dict or None. The `logs` passed by
225
                paddle.Model is None.
226 227 228 229 230 231 232 233
        """

    def on_epoch_end(self, epoch, logs=None):
        """Called at the end of each epoch.

        Args:
            epoch (int): The index of epoch.
            logs (dict): The logs is a dict or None. The `logs` passed by
234
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
235 236 237 238 239 240 241 242 243
                of last batch.
        """

    def on_train_batch_begin(self, step, logs=None):
        """Called at the beginning of each batch in training.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
244
                paddle.Model is empty.
245 246 247 248 249 250 251 252
        """

    def on_train_batch_end(self, step, logs=None):
        """Called at the end of each batch in training.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
253
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
254 255 256 257 258 259 260 261 262
                of current batch.
        """

    def on_eval_batch_begin(self, step, logs=None):
        """Called at the beginning of each batch in evaluation.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
263
                paddle.Model is empty.
264 265 266 267 268 269 270 271
        """

    def on_eval_batch_end(self, step, logs=None):
        """Called at the end of each batch in evaluation.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None. The `logs` passed by
272
                paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                of current batch.
        """

    def on_test_batch_begin(self, step, logs=None):
        """Called at the beginning of each batch in predict.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None.
        """

    def on_test_batch_end(self, step, logs=None):
        """Called at the end of each batch in predict.

        Args:
            step (int): The index of step (or iteration).
            logs (dict): The logs is a dict or None.
        """


class ProgBarLogger(Callback):
    """Logger callback function
    Args:
        log_freq (int): The frequency, in number of steps, the logs such as `loss`, 
                `metrics` are printed. Default: 1.
        verbose (int): The verbosity mode, should be 0, 1, or 2.
                0 = silent, 1 = progress bar, 2 = one line per epoch. Default: 2.

    Examples:
        .. code-block:: python

304
            import paddle
305
            import paddle.vision.transforms as T
306
            from paddle.static import InputSpec
307

308 309
            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
310

311 312 313 314 315
            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
316

L
LielinJiang 已提交
317 318
            lenet = paddle.vision.LeNet()
            model = paddle.Model(lenet,
319
                inputs, labels)
320

L
LielinJiang 已提交
321
            optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
322
            model.prepare(optimizer=optim,
323 324
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
325

326
            callback = paddle.callbacks.ProgBarLogger(log_freq=10)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            model.fit(train_dataset, batch_size=64, callbacks=callback)
    """

    def __init__(self, log_freq=1, verbose=2):
        self.epochs = None
        self.steps = None
        self.progbar = None
        self.verbose = verbose
        self.log_freq = log_freq

    def _is_print(self):
        return self.verbose and ParallelEnv().local_rank == 0

    def on_train_begin(self, logs=None):
        self.epochs = self.params['epochs']
        assert self.epochs
        self.train_metrics = self.params['metrics']
        assert self.train_metrics

    def on_epoch_begin(self, epoch=None, logs=None):
        self.steps = self.params['steps']
        self.epoch = epoch
        self.train_step = 0
        if self.epochs and self._is_print():
            print('Epoch %d/%d' % (epoch + 1, self.epochs))
        self.train_progbar = ProgressBar(num=self.steps, verbose=self.verbose)

    def _updates(self, logs, mode):
        values = []
        metrics = getattr(self, '%s_metrics' % (mode))
        progbar = getattr(self, '%s_progbar' % (mode))
        steps = getattr(self, '%s_step' % (mode))

        for k in metrics:
            if k in logs:
                values.append((k, logs[k]))

        progbar.update(steps, values)

    def on_train_batch_end(self, step, logs=None):
        logs = logs or {}
        self.train_step += 1

        if self._is_print() and self.train_step % self.log_freq == 0:
            if self.steps is None or self.train_step < self.steps:
                self._updates(logs, 'train')

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        if self._is_print() and (self.steps is not None):
            self._updates(logs, 'train')

    def on_eval_begin(self, logs=None):
        self.eval_steps = logs.get('steps', None)
        self.eval_metrics = logs.get('metrics', [])
        self.eval_step = 0
        self.evaled_samples = 0

        self.eval_progbar = ProgressBar(
            num=self.eval_steps, verbose=self.verbose)
        if self._is_print():
            print('Eval begin...')

    def on_eval_batch_end(self, step, logs=None):
        logs = logs or {}
        self.eval_step += 1
        samples = logs.get('batch_size', 1)
        self.evaled_samples += samples

        if self._is_print() and self.eval_step % self.log_freq == 0:
            if self.eval_steps is None or self.eval_step < self.eval_steps:
                self._updates(logs, 'eval')

    def on_test_begin(self, logs=None):
        self.test_steps = logs.get('steps', None)
        self.test_metrics = logs.get('metrics', [])
        self.test_step = 0
        self.tested_samples = 0
        self.test_progbar = ProgressBar(
            num=self.test_steps, verbose=self.verbose)
        if self._is_print():
            print('Predict begin...')

    def on_test_batch_end(self, step, logs=None):
        logs = logs or {}
        self.test_step += 1
        samples = logs.get('batch_size', 1)
        self.tested_samples += samples

        if self.test_step % self.log_freq == 0 and self._is_print():
            if self.test_steps is None or self.test_step < self.test_steps:
                self._updates(logs, 'test')

    def on_eval_end(self, logs=None):
        logs = logs or {}
        if self._is_print() and (self.eval_steps is not None):
            self._updates(logs, 'eval')
            print('Eval samples: %d' % (self.evaled_samples))

    def on_test_end(self, logs=None):
        logs = logs or {}
        if self._is_print():
            if self.test_step % self.log_freq != 0 or self.verbose == 1:
                self._updates(logs, 'test')
            print('Predict samples: %d' % (self.tested_samples))


class ModelCheckpoint(Callback):
    """Model checkpoint callback function
    Args:
        save_freq(int): The frequency, in number of epochs, the model checkpoint 
                        are saved. Default: 1.
        save_dir(str|None): The directory to save checkpoint during training.
                If None, will not save checkpoint. Default: None.

    Examples:
        .. code-block:: python

445
            import paddle
446
            import paddle.vision.transforms as T
447
            from paddle.static import InputSpec
448

449 450
            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
451

452 453 454 455 456
            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
457

L
LielinJiang 已提交
458 459
            lenet = paddle.vision.LeNet()
            model = paddle.Model(lenet,
460
                inputs, labels)
461

L
LielinJiang 已提交
462
            optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
463
            model.prepare(optimizer=optim,
464 465
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
466

467
            callback = paddle.callbacks.ModelCheckpoint(save_dir='./temp')
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
            model.fit(train_dataset, batch_size=64, callbacks=callback)
    """

    def __init__(self, save_freq=1, save_dir=None):
        self.save_freq = save_freq
        self.save_dir = save_dir

    def on_epoch_begin(self, epoch=None, logs=None):
        self.epoch = epoch

    def _is_save(self):
        return self.model and self.save_dir and ParallelEnv().local_rank == 0

    def on_epoch_end(self, epoch, logs=None):
        if self._is_save() and self.epoch % self.save_freq == 0:
            path = '{}/{}'.format(self.save_dir, epoch)
484
            print('save checkpoint at {}'.format(os.path.abspath(path)))
485 486 487 488 489
            self.model.save(path)

    def on_train_end(self, logs=None):
        if self._is_save():
            path = '{}/final'.format(self.save_dir)
490
            print('save checkpoint at {}'.format(os.path.abspath(path)))
491
            self.model.save(path)
492 493


494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
class LRScheduler(Callback):
    """Lr scheduler callback function
    Args:
        by_step(bool, optional): whether to update learning rate scheduler 
            by step. Default: True.
        by_epoch(bool, optional): whether to update learning rate scheduler 
            by epoch. Default: False.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)

            lenet = paddle.vision.LeNet()
            model = paddle.Model(lenet,
                inputs, labels)

            base_lr = 1e-3
            boundaries = [5, 8]
            wamup_steps = 4
            
            def make_optimizer(parameters=None):
                momentum = 0.9
                weight_decay = 5e-4
                values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
                learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                    boundaries=boundaries, values=values)
                learning_rate = paddle.optimizer.lr.LinearWarmup(
                    learning_rate=learning_rate,
                    warmup_steps=wamup_epochs,
                    start_lr=base_lr / 5.,
                    end_lr=base_lr,
                    verbose=True)
                optimizer = paddle.optimizer.Momentum(
                    learning_rate=learning_rate,
                    weight_decay=weight_decay,
                    momentum=momentum,
                    parameters=parameters)
                return optimizer
                
            optim = make_optimizer(parameters=lenet.parameters())
            model.prepare(optimizer=optim,
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())

            # if LRScheduler callback not set, an instance LRScheduler update by step 
            # will be created auto.
            model.fit(train_dataset, batch_size=64)

            # create a learning rate scheduler update by epoch
            callback = paddle.callbacks.LRScheduler(by_step=False, by_epoch=True)
            model.fit(train_dataset, batch_size=64, callbacks=callback)
    """

    def __init__(self, by_step=True, by_epoch=False):
        if by_step and by_epoch:
            raise ValueError(
                "by_step option is mutually exclusive with by_epoch")

        self.by_step = by_step
        self.by_epoch = by_epoch

    def on_epoch_end(self, epoch, logs=None):
        if self.by_epoch:
            if self.model._optimizer and \
                hasattr(self.model._optimizer, '_learning_rate') and \
                isinstance(self.model._optimizer._learning_rate,
                           paddle.optimizer.lr.LRScheduler):
                self.model._optimizer._learning_rate.step()

    def on_train_batch_end(self, step, logs=None):
        if self.by_step:
            if self.model._optimizer and \
                hasattr(self.model._optimizer, '_learning_rate') and \
                isinstance(self.model._optimizer._learning_rate,
                           paddle.optimizer.lr.LRScheduler):
                self.model._optimizer._learning_rate.step()


584 585 586 587 588 589 590 591 592
class VisualDL(Callback):
    """VisualDL callback function
    Args:
        log_dir (str): The directory to save visualdl log file.

    Examples:
        .. code-block:: python

            import paddle
593
            import paddle.vision.transforms as T
594 595 596 597 598
            from paddle.static import InputSpec

            inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
            labels = [InputSpec([None, 1], 'int64', 'label')]

599 600 601 602 603 604
            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            eval_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

            net = paddle.vision.LeNet()
            model = paddle.Model(net, inputs, labels)

            optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
            model.prepare(optimizer=optim,
                        loss=paddle.nn.CrossEntropyLoss(),
                        metrics=paddle.metric.Accuracy())
            
            ## uncomment following lines to fit model with visualdl callback function
            # callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
            # model.fit(train_dataset, eval_dataset, batch_size=64, callbacks=callback)

    """

    def __init__(self, log_dir):
        self.log_dir = log_dir
        self.epochs = None
        self.steps = None
        self.epoch = 0

    def _is_write(self):
        return ParallelEnv().local_rank == 0

    def on_train_begin(self, logs=None):
        self.epochs = self.params['epochs']
        assert self.epochs
        self.train_metrics = self.params['metrics']
        assert self.train_metrics
        self._is_fit = True
        self.train_step = 0

    def on_epoch_begin(self, epoch=None, logs=None):
        self.steps = self.params['steps']
        self.epoch = epoch

    def _updates(self, logs, mode):
        if not self._is_write():
            return
        if not hasattr(self, 'writer'):
            visualdl = try_import('visualdl')
            self.writer = visualdl.LogWriter(self.log_dir)

        metrics = getattr(self, '%s_metrics' % (mode))
        current_step = getattr(self, '%s_step' % (mode))

        if mode == 'train':
            total_step = current_step
        else:
            total_step = self.epoch

        for k in metrics:
            if k in logs:
                temp_tag = mode + '/' + k

                if isinstance(logs[k], (list, tuple)):
                    temp_value = logs[k][0]
                elif isinstance(logs[k], numbers.Number):
                    temp_value = logs[k]
                else:
                    continue

                self.writer.add_scalar(
                    tag=temp_tag, step=total_step, value=temp_value)

    def on_train_batch_end(self, step, logs=None):
        logs = logs or {}
        self.train_step += 1

        if self._is_write():
            self._updates(logs, 'train')

    def on_eval_begin(self, logs=None):
        self.eval_steps = logs.get('steps', None)
        self.eval_metrics = logs.get('metrics', [])
        self.eval_step = 0
        self.evaled_samples = 0

    def on_train_end(self, logs=None):
        if hasattr(self, 'writer'):
            self.writer.close()
            delattr(self, 'writer')

    def on_eval_end(self, logs=None):
        if self._is_write():
            self._updates(logs, 'eval')

            if (not hasattr(self, '_is_fit')) and hasattr(self, 'writer'):
                self.writer.close()
                delattr(self, 'writer')