interpolate_op.h 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <string>
14
#include <vector>
15 16 17 18 19 20 21 22 23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;
25
using DataLayout = framework::DataLayout;
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
inline std::vector<int> get_new_shape(
    const std::vector<const Tensor*>& list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
    PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
                      "shape of dim tensor should be [1]");
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
  std::vector<T> vec_new_data;
  auto* new_data = new_data_tensor->data<T>();
  framework::Tensor cpu_starts_tensor;
  if (platform::is_gpu_place(new_data_tensor->place())) {
    TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
    new_data = cpu_starts_tensor.data<T>();
  }
  vec_new_data = std::vector<T>(new_data, new_data + new_data_tensor->numel());
  return vec_new_data;
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
inline void ExtractNCDWH(const framework::DDim& dims,
                         const DataLayout& data_layout, int* N, int* C, int* D,
                         int* H, int* W) {
  *N = dims[0];
  if (dims.size() == 4) {
    *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[3];
    *D = 1;
    *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
    *W = data_layout == DataLayout::kNCHW ? dims[3] : dims[2];
  } else {
    *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[4];
    *D = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
    *H = data_layout == DataLayout::kNCHW ? dims[3] : dims[2];
    *W = data_layout == DataLayout::kNCHW ? dims[4] : dims[3];
  }
}

78 79 80 81
template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
                                       const float ratio_h, const float ratio_w,
                                       const int n, const int c,
82
                                       const int out_h, const int out_w,
83 84
                                       const bool align_corners,
                                       const DataLayout& data_layout) {
85 86 87
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
88 89
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
90 91

    for (int l = 0; l < out_w; l++) {
92 93
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
94 95 96

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
97 98 99 100 101
          if (data_layout == DataLayout::kNCHW) {
            output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
          } else {
            output_t(i, k, l, j) = input_t(i, in_k, in_l, j);
          }
102 103 104 105 106 107 108 109 110 111
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
                                  const float ratio_h, const float ratio_w,
                                  const int in_h, const int in_w, const int n,
112 113
                                  const int c, const int out_h, const int out_w,
                                  const bool align_corners,
114 115
                                  const bool align_mode,
                                  const DataLayout data_layout) {
116 117
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
T
tink2123 已提交
118
  bool align_flag = (align_mode == 0 && !align_corners);
119 120 121 122 123 124 125 126 127 128 129

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int k = 0; k < out_h; k++) {
T
tink2123 已提交
130 131
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
132
    y_n = (y_n > 0) ? y_n : 0;
133
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
134 135 136
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
137
    float d_s = 1.f - d_n;
138 139 140 141 142 143 144
    {
      vy_n[k] = y_n;
      vy_s[k] = y_s;
      vd_n[k] = d_n;
      vd_s[k] = d_s;
    }
  }
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int l = 0; l < out_w; l++) {
    int x_w = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                  : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;
    int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
161 162 163
    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
164 165 166 167 168 169 170 171
    float d_e = 1.f - d_w;
    {
      vx_w[l] = x_w;
      vx_e[l] = x_e;
      vd_w[l] = d_w;
      vd_e[l] = d_e;
    }
  }
172

173 174 175 176 177 178 179
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(4)
#endif
  for (int i = 0; i < n; i++) {          // loop for batches
    for (int j = 0; j < c; j++) {        // loop for channels
      for (int k = 0; k < out_h; k++) {  // loop for images
        for (int l = 0; l < out_w; l++) {
180
          // bilinear interpolation
181 182 183
          T out_t;
          if (data_layout == DataLayout::kNCHW) {
            out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] +
184 185 186
                    input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] +
                    input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] +
                    input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l];
187 188 189 190 191 192 193 194 195
            output_t(i, j, k, l) = out_t;

          } else {
            out_t = input_t(i, vy_n[k], vx_w[l], j) * vd_s[k] * vd_e[l] +
                    input_t(i, vy_s[k], vx_w[l], j) * vd_n[k] * vd_e[l] +
                    input_t(i, vy_n[k], vx_e[l], j) * vd_s[k] * vd_w[l] +
                    input_t(i, vy_s[k], vx_e[l], j) * vd_n[k] * vd_w[l];
            output_t(i, k, l, j) = out_t;
          }
196 197 198 199 200 201
        }
      }
    }
  }
}

K
Kaipeng Deng 已提交
202 203 204 205 206
template <typename T>
static void TrilinearInterpolation(
    const Tensor& input, Tensor* output, const float ratio_d,
    const float ratio_h, const float ratio_w, const int in_d, const int in_h,
    const int in_w, const int n, const int c, const int out_d, const int out_h,
207 208
    const int out_w, const bool align_corners, const bool align_mode,
    const DataLayout& data_layout) {
K
Kaipeng Deng 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  auto input_t = EigenTensor<T, 5>::From(input);
  auto output_t = EigenTensor<T, 5>::From(*output);
  bool align_flag = (align_mode == 0 && !align_corners);

  std::vector<int> vt_f, vt_b;
  std::vector<float> vd_f, vd_b;
  vt_f.reserve(out_d);
  vt_b.reserve(out_d);
  vd_f.reserve(out_d);
  vd_b.reserve(out_d);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int j = 0; j < out_d; j++) {
    int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
                         : static_cast<int>(ratio_d * j);
    t_f = (t_f > 0) ? t_f : 0;
    int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
    float idx_src_t = ratio_d * (j + 0.5) - 0.5;
    idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
    float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
    float d_b = 1.f - d_f;
    {
      vt_f[j] = t_f;
      vt_b[j] = t_b;
      vd_f[j] = d_f;
      vd_b[j] = d_b;
    }
  }

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int k = 0; k < out_h; k++) {
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
    y_n = (y_n > 0) ? y_n : 0;
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
    float d_s = 1.f - d_n;
    {
      vy_n[k] = y_n;
      vy_s[k] = y_s;
      vd_n[k] = d_n;
      vd_s[k] = d_s;
    }
  }

  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int l = 0; l < out_w; l++) {
    int x_w = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                  : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;
    int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
    float d_e = 1.f - d_w;
    {
      vx_w[l] = x_w;
      vx_e[l] = x_e;
      vd_w[l] = d_w;
      vd_e[l] = d_e;
    }
  }

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(5)
#endif
  for (int b = 0; b < n; b++) {          // loop for batches
    for (int i = 0; i < c; i++) {        // loop for channels
      for (int j = 0; j < out_d; j++) {  // loop for D, H, W
        for (int k = 0; k < out_h; k++) {
          for (int l = 0; l < out_w; l++) {
            // trilinear interpolation
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
            if (data_layout == DataLayout::kNCHW) {
              T out_t = input_t(b, i, vt_f[j], vy_n[k], vx_w[l]) * vd_b[j] *
                            vd_s[k] * vd_e[l] +
                        input_t(b, i, vt_f[j], vy_n[k], vx_e[l]) * vd_b[j] *
                            vd_s[k] * vd_w[l] +
                        input_t(b, i, vt_f[j], vy_s[k], vx_w[l]) * vd_b[j] *
                            vd_n[k] * vd_e[l] +
                        input_t(b, i, vt_f[j], vy_s[k], vx_e[l]) * vd_b[j] *
                            vd_n[k] * vd_w[l] +
                        input_t(b, i, vt_b[j], vy_n[k], vx_w[l]) * vd_f[j] *
                            vd_s[k] * vd_e[l] +
                        input_t(b, i, vt_b[j], vy_n[k], vx_e[l]) * vd_f[j] *
                            vd_s[k] * vd_w[l] +
                        input_t(b, i, vt_b[j], vy_s[k], vx_w[l]) * vd_f[j] *
                            vd_n[k] * vd_e[l] +
                        input_t(b, i, vt_b[j], vy_s[k], vx_e[l]) * vd_f[j] *
                            vd_n[k] * vd_w[l];
              output_t(b, i, j, k, l) = out_t;
            } else {
              T out_t = input_t(b, vt_f[j], vy_n[k], vx_w[l], i) * vd_b[j] *
                            vd_s[k] * vd_e[l] +
                        input_t(b, vt_f[j], vy_n[k], vx_e[l], i) * vd_b[j] *
                            vd_s[k] * vd_w[l] +
                        input_t(b, vt_f[j], vy_s[k], vx_w[l], i) * vd_b[j] *
                            vd_n[k] * vd_e[l] +
                        input_t(b, vt_f[j], vy_s[k], vx_e[l], i) * vd_b[j] *
                            vd_n[k] * vd_w[l] +
                        input_t(b, vt_b[j], vy_n[k], vx_w[l], i) * vd_f[j] *
                            vd_s[k] * vd_e[l] +
                        input_t(b, vt_b[j], vy_n[k], vx_e[l], i) * vd_f[j] *
                            vd_s[k] * vd_w[l] +
                        input_t(b, vt_b[j], vy_s[k], vx_w[l], i) * vd_f[j] *
                            vd_n[k] * vd_e[l] +
                        input_t(b, vt_b[j], vy_s[k], vx_e[l], i) * vd_f[j] *
                            vd_n[k] * vd_w[l];
              output_t(b, j, k, l, i) = out_t;
            }
K
Kaipeng Deng 已提交
338 339 340 341 342 343 344
          }
        }
      }
    }
  }
}

345
template <typename T>
346 347 348
static void NearestNeighborInterpolateGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
    const float ratio_w, const int n, const int c, const int out_h,
349
    const int out_w, const bool align_corners, const DataLayout data_layout) {
350 351
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
352

353
  for (int k = 0; k < out_h; k++) {  // loop for images
354 355
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
356 357

    for (int l = 0; l < out_w; l++) {
358 359
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
360 361 362

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
363 364 365 366 367
          if (data_layout == DataLayout::kNCHW) {
            input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
          } else {
            input_grad_t(i, in_k, in_l, j) += output_grad_t(i, k, l, j);
          }
368 369 370 371 372 373 374
        }
      }
    }
  }
}

template <typename T>
375 376 377 378 379
static void BilinearInterpolationGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
    const float ratio_w, const int in_h, const int in_w, const int n,
    const int c, const int out_h, const int out_w, const bool align_corners,
    const int align_mode, const DataLayout data_layout) {
380 381
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
T
tink2123 已提交
382
  bool align_flag = (align_mode == 0 && !align_corners);
383
  for (int k = 0; k < out_h; k++) {  // loop for images
T
tink2123 已提交
384 385
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
386
    y_n = (y_n > 0) ? y_n : 0;
387
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
388 389 390
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
391 392 393
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
T
tink2123 已提交
394 395
      int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                           : static_cast<int>(ratio_w * l);
T
tink2123 已提交
396
      x_w = (x_w > 0) ? x_w : 0;
397
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
398 399 400
      float idx_src_x = ratio_w * (l + 0.5) - 0.5;
      idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
      float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
401 402 403 404 405
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation grad
406 407 408 409 410 411 412 413 414 415 416 417 418
          if (data_layout == DataLayout::kNCHW) {
            const T grad = output_grad_t(i, j, k, l);
            input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
            input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
            input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
            input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
          } else {
            const T grad = output_grad_t(i, k, l, j);
            input_grad_t(i, y_n, x_w, j) += static_cast<T>(grad * d_s * d_e);
            input_grad_t(i, y_s, x_w, j) += static_cast<T>(grad * d_n * d_e);
            input_grad_t(i, y_n, x_e, j) += static_cast<T>(grad * d_s * d_w);
            input_grad_t(i, y_s, x_e, j) += static_cast<T>(grad * d_n * d_w);
          }
419 420 421 422 423
        }
      }
    }
  }
}
K
Kaipeng Deng 已提交
424

425
template <typename T>
K
Kaipeng Deng 已提交
426 427 428 429
static void TrilinearInterpolationGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_d,
    const float ratio_h, const float ratio_w, const int in_d, const int in_h,
    const int in_w, const int n, const int c, const int out_d, const int out_h,
430 431
    const int out_w, const bool align_corners, const int align_mode,
    const DataLayout data_layout) {
K
Kaipeng Deng 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  auto input_grad_t = EigenTensor<T, 5>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 5>::From(output_grad);
  bool align_flag = (align_mode == 0 && !align_corners);
  for (int j = 0; j < out_d; j++) {  // loop for D
    int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
                         : static_cast<int>(ratio_d * j);
    t_f = (t_f > 0) ? t_f : 0;
    int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
    float idx_src_t = ratio_d * (j + 0.5) - 0.5;
    idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
    float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
    float d_b = 1.f - d_f;

    for (int k = 0; k < out_h; k++) {  // loop for H
      int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                           : static_cast<int>(ratio_h * k);
      y_n = (y_n > 0) ? y_n : 0;
      int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
      float idx_src_y = ratio_h * (k + 0.5) - 0.5;
      idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
      float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
      float d_s = 1.f - d_n;

      for (int l = 0; l < out_w; l++) {  // loop for W
        int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                             : static_cast<int>(ratio_w * l);
        x_w = (x_w > 0) ? x_w : 0;
        int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
        float idx_src_x = ratio_w * (l + 0.5) - 0.5;
        idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
        float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
        float d_e = 1.f - d_w;

        for (int b = 0; b < n; b++) {    // loop for batches
          for (int i = 0; i < c; i++) {  // loop for channels
            // trilinear interpolation grad
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
            if (data_layout == DataLayout::kNCHW) {
              const T grad = output_grad_t(b, i, j, k, l);
              input_grad_t(b, i, t_f, y_n, x_w) +=
                  static_cast<T>(grad * d_b * d_s * d_e);
              input_grad_t(b, i, t_f, y_n, x_e) +=
                  static_cast<T>(grad * d_b * d_s * d_w);
              input_grad_t(b, i, t_f, y_s, x_w) +=
                  static_cast<T>(grad * d_b * d_n * d_e);
              input_grad_t(b, i, t_f, y_s, x_e) +=
                  static_cast<T>(grad * d_b * d_n * d_w);
              input_grad_t(b, i, t_b, y_n, x_w) +=
                  static_cast<T>(grad * d_f * d_s * d_e);
              input_grad_t(b, i, t_b, y_n, x_e) +=
                  static_cast<T>(grad * d_f * d_s * d_w);
              input_grad_t(b, i, t_b, y_s, x_w) +=
                  static_cast<T>(grad * d_f * d_n * d_e);
              input_grad_t(b, i, t_b, y_s, x_e) +=
                  static_cast<T>(grad * d_f * d_n * d_w);
            } else {
              const T grad = output_grad_t(b, j, k, l, i);
              input_grad_t(b, t_f, y_n, x_w, i) +=
                  static_cast<T>(grad * d_b * d_s * d_e);
              input_grad_t(b, t_f, y_n, x_e, i) +=
                  static_cast<T>(grad * d_b * d_s * d_w);
              input_grad_t(b, t_f, y_s, x_w, i) +=
                  static_cast<T>(grad * d_b * d_n * d_e);
              input_grad_t(b, t_f, y_s, x_e, i) +=
                  static_cast<T>(grad * d_b * d_n * d_w);
              input_grad_t(b, t_b, y_n, x_w, i) +=
                  static_cast<T>(grad * d_f * d_s * d_e);
              input_grad_t(b, t_b, y_n, x_e, i) +=
                  static_cast<T>(grad * d_f * d_s * d_w);
              input_grad_t(b, t_b, y_s, x_w, i) +=
                  static_cast<T>(grad * d_f * d_n * d_e);
              input_grad_t(b, t_b, y_s, x_e, i) +=
                  static_cast<T>(grad * d_f * d_n * d_w);
            }
K
Kaipeng Deng 已提交
505 506 507 508 509 510
          }
        }
      }
    }
  }
}
511

K
Kaipeng Deng 已提交
512 513 514
template <typename T>
static void Interpolate2DCPUFwd(const framework::ExecutionContext& ctx,
                                const Tensor& input, Tensor* output) {
515 516 517 518
  const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
  const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
  int n, c, in_d, in_h, in_w;
  ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
K
Kaipeng Deng 已提交
519 520 521 522 523 524 525

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
D
dengkaipeng 已提交
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
  auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
  if (list_new_size_tensor.size() > 0) {
    // have size tensor
    auto new_size = get_new_shape(list_new_size_tensor);
    out_h = new_size[0];
    out_w = new_size[1];
  } else {
    float scale;
    auto scale_tensor = ctx.Input<Tensor>("Scale");
    if (scale_tensor != nullptr) {
      auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
      scale = scale_data[0];
    } else {
      scale = ctx.Attr<float>("scale");
    }
    if (scale > 0) {
      out_h = static_cast<int>(in_h * scale);
      out_w = static_cast<int>(in_w * scale);
    }
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
K
Kaipeng Deng 已提交
552
  }
553 554 555 556 557 558
  PADDLE_ENFORCE_GT(
      out_h, 0,
      "out_h in Attr(out_shape) of Op(interpolate) should be greater than 0.");
  PADDLE_ENFORCE_GT(
      out_w, 0,
      "out_w in Attr(out_shape) of Op(interpolate) should be greater than 0.");
559 560 561 562 563 564 565
  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {n, c, out_h, out_w};
  } else {
    dim_out = {n, out_h, out_w, c};
  }
  output->mutable_data<T>(dim_out, ctx.GetPlace());
D
dengkaipeng 已提交
566

K
Kaipeng Deng 已提交
567 568 569 570
  if (in_h == out_h && in_w == out_w) {
    framework::TensorCopy(input, ctx.GetPlace(), output);
    return;
  }
571

K
Kaipeng Deng 已提交
572 573 574 575 576 577 578 579 580 581
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }
T
tink2123 已提交
582

K
Kaipeng Deng 已提交
583 584
  if ("bilinear" == interp_method) {
    BilinearInterpolation<T>(input, output, ratio_h, ratio_w, in_h, in_w, n, c,
585 586
                             out_h, out_w, align_corners, align_mode,
                             data_layout);
K
Kaipeng Deng 已提交
587 588
  } else if ("nearest" == interp_method) {
    NearestNeighborInterpolate<T>(input, output, ratio_h, ratio_w, n, c, out_h,
589
                                  out_w, align_corners, data_layout);
K
Kaipeng Deng 已提交
590 591
  }
}
592

K
Kaipeng Deng 已提交
593 594 595
template <typename T>
static void Interpolate3DCPUFwd(const framework::ExecutionContext& ctx,
                                const Tensor& input, Tensor* output) {
596 597 598 599
  const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
  const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
  int n, c, in_d, in_h, in_w;
  ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
K
Kaipeng Deng 已提交
600 601 602 603 604 605 606 607 608

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_d = ctx.Attr<int>("out_d");
  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
  auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
  if (list_new_size_tensor.size() > 0) {
    // have size tensor
    auto new_size = get_new_shape(list_new_size_tensor);
    out_d = new_size[0];
    out_h = new_size[1];
    out_w = new_size[2];
  } else {
    float scale;
    auto scale_tensor = ctx.Input<Tensor>("Scale");
    if (scale_tensor != nullptr) {
      auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
      scale = scale_data[0];
    } else {
      scale = ctx.Attr<float>("scale");
    }
    if (scale > 0) {
      out_d = static_cast<int>(in_d * scale);
      out_h = static_cast<int>(in_h * scale);
      out_w = static_cast<int>(in_w * scale);
    }
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      out_d = out_size_data[0];
      out_h = out_size_data[1];
      out_w = out_size_data[2];
    }
K
Kaipeng Deng 已提交
637
  }
638 639 640 641 642 643 644 645 646
  PADDLE_ENFORCE_GT(
      out_d, 0,
      "out_d in Attr(out_shape) of Op(interpolate) should be greater than 0.");
  PADDLE_ENFORCE_GT(
      out_h, 0,
      "out_h in Attr(out_shape) of Op(interpolate) should be greater than 0.");
  PADDLE_ENFORCE_GT(
      out_w, 0,
      "out_w in Attr(out_shape) of Op(interpolate) should be greater than 0.");
647 648 649 650 651 652 653 654 655

  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {n, c, out_d, out_h, out_w};
  } else {
    dim_out = {n, out_d, out_h, out_w, c};
  }

  output->mutable_data<T>(dim_out, ctx.GetPlace());
K
Kaipeng Deng 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

  if (in_d == out_d && in_h == out_h && in_w == out_w) {
    framework::TensorCopy(input, ctx.GetPlace(), output);
    return;
  }

  float ratio_d = 0.f;
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_d > 1) {
    ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
                              : static_cast<float>(in_d) / out_d;
  }
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
676
  }
K
Kaipeng Deng 已提交
677 678 679 680

  if ("trilinear" == interp_method) {
    TrilinearInterpolation<T>(input, output, ratio_d, ratio_h, ratio_w, in_d,
                              in_h, in_w, n, c, out_d, out_h, out_w,
681
                              align_corners, align_mode, data_layout);
K
Kaipeng Deng 已提交
682 683
  }
}
684 685

template <typename T>
K
Kaipeng Deng 已提交
686 687 688
static void Interpolate2DCPUBwd(const framework::ExecutionContext& ctx,
                                Tensor* input_grad, const Tensor& output_grad) {
  auto* input = ctx.Input<Tensor>("X");
689 690 691 692
  const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
  const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
  int n, c, in_d, in_h, in_w;
  ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
K
Kaipeng Deng 已提交
693 694 695 696 697 698 699

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
700 701 702 703 704 705 706 707
  float scale;
  auto scale_tensor = ctx.Input<Tensor>("Scale");
  if (scale_tensor != nullptr) {
    auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
    scale = scale_data[0];
  } else {
    scale = ctx.Attr<float>("scale");
  }
K
Kaipeng Deng 已提交
708 709 710 711 712 713
  if (scale > 0) {
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }
  auto out_size = ctx.Input<Tensor>("OutSize");
  if (out_size != nullptr) {
714
    auto out_size_data = get_new_data_from_tensor<int>(out_size);
K
Kaipeng Deng 已提交
715 716 717
    out_h = out_size_data[0];
    out_w = out_size_data[1];
  }
718 719 720 721 722 723 724
  auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
  if (list_new_size_tensor.size() > 0) {
    // have size tensor
    auto new_size = get_new_shape(list_new_size_tensor);
    out_h = new_size[0];
    out_w = new_size[1];
  }
D
dengkaipeng 已提交
725

726 727 728 729 730 731 732 733
  framework::DDim dim_grad;
  if (data_layout == DataLayout::kNCHW) {
    dim_grad = {n, c, in_h, in_w};
  } else {
    dim_grad = {n, in_h, in_w, c};
  }
  input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());

K
Kaipeng Deng 已提交
734 735 736
  auto& device_ctx = ctx.template device_context<platform::CPUDeviceContext>();
  math::SetConstant<platform::CPUDeviceContext, T> zero;
  zero(device_ctx, input_grad, static_cast<T>(0.0));
D
dengkaipeng 已提交
737

K
Kaipeng Deng 已提交
738 739 740 741
  if (in_h == out_h && in_w == out_w) {
    framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
    return;
  }
D
dengkaipeng 已提交
742

K
Kaipeng Deng 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }

  if ("bilinear" == interp_method) {
    BilinearInterpolationGrad<T>(output_grad, input_grad, ratio_h, ratio_w,
                                 in_h, in_w, n, c, out_h, out_w, align_corners,
757
                                 align_mode, data_layout);
K
Kaipeng Deng 已提交
758 759
  } else if ("nearest" == interp_method) {
    NearestNeighborInterpolateGrad<T>(output_grad, input_grad, ratio_h, ratio_w,
760 761
                                      n, c, out_h, out_w, align_corners,
                                      data_layout);
K
Kaipeng Deng 已提交
762 763
  }
}
D
dengkaipeng 已提交
764

K
Kaipeng Deng 已提交
765 766 767 768
template <typename T>
static void Interpolate3DCPUBwd(const framework::ExecutionContext& ctx,
                                Tensor* input_grad, const Tensor output_grad) {
  auto* input = ctx.Input<Tensor>("X");
769 770 771 772
  const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
  const DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
  int n, c, in_d, in_h, in_w;
  ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
K
Kaipeng Deng 已提交
773 774 775 776 777 778 779 780

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_d = ctx.Attr<int>("out_d");
  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
781 782 783 784 785 786 787 788
  float scale;
  auto scale_tensor = ctx.Input<Tensor>("Scale");
  if (scale_tensor != nullptr) {
    auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
    scale = scale_data[0];
  } else {
    scale = ctx.Attr<float>("scale");
  }
K
Kaipeng Deng 已提交
789 790 791 792 793 794 795
  if (scale > 0) {
    out_d = static_cast<int>(in_d * scale);
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }
  auto out_size = ctx.Input<Tensor>("OutSize");
  if (out_size != nullptr) {
796
    auto out_size_data = get_new_data_from_tensor<int>(out_size);
K
Kaipeng Deng 已提交
797 798 799 800
    out_d = out_size_data[0];
    out_h = out_size_data[1];
    out_w = out_size_data[2];
  }
801 802 803 804 805 806 807 808
  auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
  if (list_new_size_tensor.size() > 0) {
    // have size tensor
    auto new_size = get_new_shape(list_new_size_tensor);
    out_d = new_size[0];
    out_h = new_size[1];
    out_w = new_size[2];
  }
809

810 811 812 813 814 815 816
  framework::DDim dim_grad;
  if (data_layout == DataLayout::kNCHW) {
    dim_grad = {n, c, in_d, in_h, in_w};
  } else {
    dim_grad = {n, in_d, in_h, in_w, c};
  }
  input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());
K
Kaipeng Deng 已提交
817 818 819 820 821 822 823 824
  auto& device_ctx = ctx.template device_context<platform::CPUDeviceContext>();
  math::SetConstant<platform::CPUDeviceContext, T> zero;
  zero(device_ctx, input_grad, static_cast<T>(0.0));

  if (in_d == out_d && in_h == out_h && in_w == out_w) {
    framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
    return;
  }
825

K
Kaipeng Deng 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
  float ratio_d = 0.f;
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_d > 1) {
    ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
                              : static_cast<float>(in_d) / out_d;
  }
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }
T
tink2123 已提交
841

K
Kaipeng Deng 已提交
842
  if ("trilinear" == interp_method) {
843 844 845
    TrilinearInterpolationGrad<T>(
        output_grad, input_grad, ratio_d, ratio_h, ratio_w, in_d, in_h, in_w, n,
        c, out_d, out_h, out_w, align_corners, align_mode, data_layout);
K
Kaipeng Deng 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
  }
}

template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");

    auto input_dims = input->dims();
    if (input_dims.size() == 4) {  // 2D interpolation
      Interpolate2DCPUFwd<T>(ctx, *input, output);
    } else if (input_dims.size() == 5) {  // 3D interpolation
      Interpolate3DCPUFwd<T>(ctx, *input, output);
T
tink2123 已提交
861
    }
K
Kaipeng Deng 已提交
862 863 864 865 866 867 868 869 870
  }
};

template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
871

K
Kaipeng Deng 已提交
872 873 874 875 876
    auto output_grad_dims = output_grad->dims();
    if (output_grad_dims.size() == 4) {  // 2D interpolation grad
      Interpolate2DCPUBwd<T>(ctx, input_grad, *output_grad);
    } else if (output_grad_dims.size() == 5) {  // 3D interpolation grad
      Interpolate3DCPUBwd<T>(ctx, input_grad, *output_grad);
877 878 879 880 881 882
    }
  }
};

}  // namespace operators
}  // namespace paddle