interpolate_op.h 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;

template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
                                       const float ratio_h, const float ratio_w,
                                       const int n, const int c,
29 30
                                       const int out_h, const int out_w,
                                       const bool align_corners) {
31 32 33
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
34 35
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
36 37

    for (int l = 0; l < out_w; l++) {
38 39
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
40 41 42 43 44 45 46 47 48 49 50 51 52 53

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
                                  const float ratio_h, const float ratio_w,
                                  const int in_h, const int in_w, const int n,
54 55 56
                                  const int c, const int out_h, const int out_w,
                                  const bool align_corners,
                                  const bool align_mode) {
57 58 59
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
60 61 62
    int y_n = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                  : static_cast<int>(ratio_h * k);
63
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
64 65 66
    float d_n = (align_mode == 0 && !align_corners)
                    ? ratio_h * (k + 0.5) - 0.5 - y_n
                    : ratio_h * k - y_n;
67 68 69
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
70 71 72
      int x_w = (align_mode == 0 && !align_corners)
                    ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                    : static_cast<int>(ratio_w * l);
73
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
74 75 76
      float d_w = (align_mode == 0 && !align_corners)
                      ? ratio_w * (l + 0.5) - 0.5 - x_w
                      : ratio_w * l - x_w;
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation
          output_t(i, j, k, l) = input_t(i, j, y_n, x_w) * d_s * d_e +
                                 input_t(i, j, y_s, x_w) * d_n * d_e +
                                 input_t(i, j, y_n, x_e) * d_s * d_w +
                                 input_t(i, j, y_s, x_e) * d_n * d_w;
        }
      }
    }
  }
}

template <typename T>
93 94 95 96
static void NearestNeighborInterpolateGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
    const float ratio_w, const int n, const int c, const int out_h,
    const int out_w, const bool align_corners) {
97 98
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
99

100
  for (int k = 0; k < out_h; k++) {  // loop for images
101 102
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
103 104

    for (int l = 0; l < out_w; l++) {
105 106
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolationGrad(const Tensor& output_grad,
                                      Tensor* input_grad, const float ratio_h,
                                      const float ratio_w, const int in_h,
                                      const int in_w, const int n, const int c,
122 123 124
                                      const int out_h, const int out_w,
                                      const bool align_corners,
                                      const int align_mode) {
125 126 127
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
  for (int k = 0; k < out_h; k++) {  // loop for images
128 129 130
    int y_n = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                  : static_cast<int>(ratio_h * k);
131
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
132 133 134
    float d_n = (align_mode == 0 && !align_corners)
                    ? ratio_h * (k + 0.5) - 0.5 - y_n
                    : ratio_h * k - y_n;
135 136 137
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
138 139 140
      int x_w = (align_mode == 0 && !align_corners)
                    ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                    : static_cast<int>(ratio_w * l);
141
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
142 143 144
      float d_w = (align_mode == 0 && !align_corners)
                      ? ratio_w * (l + 0.5) - 0.5 - x_w
                      : ratio_w * l - x_w;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation grad
          const T grad = output_grad_t(i, j, k, l);
          input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
          input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
          input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
          input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
        }
      }
    }
  }
}
template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");

    std::string interp_method = ctx.Attr<std::string>("interp_method");
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = out_size->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
176 177
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

    output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, output, static_cast<T>(0.0));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*input, ctx.GetPlace(), output);
      return;
    }

195 196 197 198 199 200
    float ratio_h = (align_corners && out_h > 1)
                        ? static_cast<float>(in_h - 1) / (out_h - 1)
                        : static_cast<float>(in_h) / out_h;
    float ratio_w = (align_corners && out_w > 1)
                        ? static_cast<float>(in_w - 1) / (out_w - 1)
                        : static_cast<float>(in_w) / out_w;
201 202 203

    if ("bilinear" == interp_method) {
      BilinearInterpolation<T>(*input, output, ratio_h, ratio_w, in_h, in_w, n,
204
                               c, out_h, out_w, align_corners, align_mode);
205 206
    } else if ("nearest" == interp_method) {
      NearestNeighborInterpolate<T>(*input, output, ratio_h, ratio_w, n, c,
207
                                    out_h, out_w, align_corners);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    }
  }
};

template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));

    std::string interp_method = ctx.Attr<std::string>("interp_method");
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = out_size->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
229 230
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

    input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, input_grad, static_cast<T>(0.0));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
      return;
    }

248 249 250 251 252 253
    float ratio_h = (align_corners && out_h > 1)
                        ? static_cast<float>(in_h - 1) / (out_h - 1)
                        : static_cast<float>(in_h) / out_h;
    float ratio_w = (align_corners && out_w > 1)
                        ? static_cast<float>(in_w - 1) / (out_w - 1)
                        : static_cast<float>(in_w) / out_w;
254 255 256

    if ("bilinear" == interp_method) {
      BilinearInterpolationGrad<T>(*output_grad, input_grad, ratio_h, ratio_w,
257 258
                                   in_h, in_w, n, c, out_h, out_w,
                                   align_corners, align_mode);
259 260
    } else if ("nearest" == interp_method) {
      NearestNeighborInterpolateGrad<T>(*output_grad, input_grad, ratio_h,
261 262
                                        ratio_w, n, c, out_h, out_w,
                                        align_corners);
263 264 265 266 267 268
    }
  }
};

}  // namespace operators
}  // namespace paddle