ps_gpu_wrapper.h 30.2 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
Thunderbrook 已提交
16
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
17 18 19 20 21

#include <atomic>
#include <ctime>
#include <map>
#include <memory>
22
#include <mutex>
T
Thunderbrook 已提交
23 24 25
#include <random>
#include <string>
#include <unordered_map>
Y
yaoxuefeng 已提交
26
#include <unordered_set>
27
#include <utility>
T
Thunderbrook 已提交
28
#include <vector>
29 30
#ifdef PADDLE_WITH_GLOO
#include <gloo/broadcast.h>
31

Y
yaoxuefeng 已提交
32
#include "paddle/fluid/framework/data_set.h"
33 34
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
35
#include "paddle/fluid/distributed/ps/thirdparty/round_robin.h"
F
Fan Zhang 已提交
36
#include "paddle/fluid/framework/channel.h"
T
Thunderbrook 已提交
37
#include "paddle/fluid/framework/fleet/heter_context.h"
L
lxsbupt 已提交
38
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_wrapper.h"
T
Thunderbrook 已提交
39 40
#include "paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
F
Fan Zhang 已提交
41 42
#include "paddle/fluid/framework/heter_util.h"
#ifdef PADDLE_WITH_CUDA
Y
yaoxuefeng 已提交
43
#include "paddle/fluid/framework/fleet/heter_ps/mem_pool.h"
F
Fan Zhang 已提交
44 45 46 47 48 49
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#endif
#ifdef PADDLE_WITH_XPU_KP
#include "paddle/fluid/platform/device/xpu/enforce_xpu.h"
#endif
T
Thunderbrook 已提交
50 51 52 53 54
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN
#include "paddle/fluid/platform/place.h"
T
Thunderbrook 已提交
55
#ifdef PADDLE_WITH_PSCORE
D
danleifeng 已提交
56 57
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/ctr_dymf_accessor.h"
58
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
D
danleifeng 已提交
59
#include "paddle/fluid/distributed/the_one_ps.pb.h"
T
Thunderbrook 已提交
60
#endif
T
Thunderbrook 已提交
61
#ifdef PADDLE_WITH_PSLIB
Z
zmxdream 已提交
62
#include "afs_api.h"  // NOLINT
T
Thunderbrook 已提交
63
#endif
Y
yaoxuefeng 已提交
64 65 66
#ifdef PADDLE_WITH_PSLIB
#include "downpour_accessor.h"  // NOLINT
#endif
67
#include "paddle/fluid/framework/fleet/heter_ps/log_patch.h"
L
lxsbupt 已提交
68
DECLARE_int32(gpugraph_storage_mode);
T
Thunderbrook 已提交
69 70 71 72

namespace paddle {
namespace framework {

F
Fan Zhang 已提交
73 74
class Dataset;

T
Thunderbrook 已提交
75 76 77 78 79
#ifdef PADDLE_WITH_PSLIB
class AfsWrapper {
 public:
  AfsWrapper() {}
  virtual ~AfsWrapper() {}
80 81 82 83
  void init(const std::string& fs_name,
            const std::string& fs_user,
            const std::string& pass_wd,
            const std::string& conf);
T
Thunderbrook 已提交
84 85 86 87 88 89 90 91 92
  int remove(const std::string& path);
  int mkdir(const std::string& path);
  std::vector<std::string> list(const std::string& path);

  int exist(const std::string& path);
  int upload(const std::string& local_file, const std::string& afs_file);

  int download(const std::string& local_file, const std::string& afs_file);

93 94 95 96
  int touchz(const std::string& path);
  std::string cat(const std::string& path);
  int mv(const std::string& old_path, const std::string& dest_path);

T
Thunderbrook 已提交
97 98 99 100 101
 private:
  paddle::ps::AfsApiWrapper afs_handler_;
};
#endif

L
lxsbupt 已提交
102 103 104 105 106 107 108 109 110
struct task_info {
  std::shared_ptr<char> build_values;
  size_t offset;
  int device_id;
  int multi_mf_dim;
  int start;
  int end;
};

T
Thunderbrook 已提交
111
class PSGPUWrapper {
D
danleifeng 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  class DCacheBuffer {
   public:
    DCacheBuffer() : buf_(nullptr) {}
    ~DCacheBuffer() {}
    /**
     * @Brief get data
     */
    template <typename T>
    T* mutable_data(const size_t total_bytes,
                    const paddle::platform::Place& place) {
      if (buf_ == nullptr) {
        buf_ = memory::AllocShared(place, total_bytes);
      } else if (buf_->size() < total_bytes) {
        buf_.reset();
        buf_ = memory::AllocShared(place, total_bytes);
      }
      return reinterpret_cast<T*>(buf_->ptr());
    }
    template <typename T>
    T* data() {
      return reinterpret_cast<T*>(buf_->ptr());
    }
    size_t memory_size() {
      if (buf_ == nullptr) {
        return 0;
      }
      return buf_->size();
    }
    bool IsInitialized(void) { return (buf_ != nullptr); }

   private:
    std::shared_ptr<memory::Allocation> buf_ = nullptr;
  };
  struct PSDeviceData {
    DCacheBuffer keys_tensor;
    DCacheBuffer dims_tensor;
    DCacheBuffer keys_ptr_tensor;
    DCacheBuffer values_ptr_tensor;
    DCacheBuffer pull_push_tensor;

    DCacheBuffer slot_lens;
    DCacheBuffer d_slot_vector;
    DCacheBuffer keys2slot;

    int64_t total_key_length = 0;
    int64_t dedup_key_length = 0;
  };
  PSDeviceData* device_caches_ = nullptr;

T
Thunderbrook 已提交
161
 public:
D
danleifeng 已提交
162
  ~PSGPUWrapper();
T
Thunderbrook 已提交
163 164 165 166 167 168

  PSGPUWrapper() {
    HeterPs_ = NULL;
    sleep_seconds_before_fail_exit_ = 300;
  }

169 170
  void PullSparse(const paddle::platform::Place& place,
                  const int table_id,
Y
yaoxuefeng 已提交
171 172 173
                  const std::vector<const uint64_t*>& keys,
                  const std::vector<float*>& values,
                  const std::vector<int64_t>& slot_lengths,
174 175 176 177
                  const std::vector<int>& slot_dim,
                  const int hidden_size);
  void PullSparse(const paddle::platform::Place& place,
                  const int table_id,
T
Thunderbrook 已提交
178 179 180 181
                  const std::vector<const uint64_t*>& keys,
                  const std::vector<float*>& values,
                  const std::vector<int64_t>& slot_lengths,
                  const int hidden_size);
182 183
  void PushSparseGrad(const paddle::platform::Place& place,
                      const int table_id,
T
Thunderbrook 已提交
184 185 186
                      const std::vector<const uint64_t*>& keys,
                      const std::vector<const float*>& grad_values,
                      const std::vector<int64_t>& slot_lengths,
187 188 189 190 191 192 193
                      const int hidden_size,
                      const int batch_size);
  void CopyKeys(const paddle::platform::Place& place,
                uint64_t** origin_keys,
                uint64_t* total_keys,
                const int64_t* gpu_len,
                int slot_num,
T
Thunderbrook 已提交
194
                int total_len);
D
danleifeng 已提交
195 196 197 198 199 200 201
  void CopyKeys(const paddle::platform::Place& place,
                uint64_t** origin_keys,
                uint64_t* total_keys,
                const int64_t* gpu_len,
                int slot_num,
                int total_len,
                int* key2slot);
T
Thunderbrook 已提交
202

L
lxsbupt 已提交
203 204
  void divide_to_device(std::shared_ptr<HeterContext> gpu_task);
  void add_slot_feature(std::shared_ptr<HeterContext> gpu_task);
205
  void BuildGPUTask(std::shared_ptr<HeterContext> gpu_task);
206 207
  void PreBuildTask(std::shared_ptr<HeterContext> gpu_task,
                    Dataset* dataset_for_pull);
208
  void BuildPull(std::shared_ptr<HeterContext> gpu_task);
L
lxsbupt 已提交
209
  void PrepareGPUTask(std::shared_ptr<HeterContext> gpu_task);
210 211 212
  void LoadIntoMemory(bool is_shuffle);
  void BeginPass();
  void EndPass();
L
lxsbupt 已提交
213 214 215 216 217
  void add_key_to_local(const std::vector<uint64_t>& keys);
  void add_key_to_gputask(std::shared_ptr<HeterContext> gpu_task);
  void resize_gputask(std::shared_ptr<HeterContext> gpu_task);
  void SparseTableToHbm();
  void HbmToSparseTable();
218
  void start_build_thread();
219
  void pre_build_thread();
L
lxsbupt 已提交
220
  void build_pull_thread();
221
  void build_task();
L
lxsbupt 已提交
222 223 224 225 226 227 228 229 230
  void DumpToMem();
  // set mode
  void SetMode(bool infer_mode) {
    infer_mode_ = infer_mode;
    if (HeterPs_ != NULL) {
      HeterPs_->set_mode(infer_mode);
    }
    VLOG(0) << "set infer mode=" << infer_mode;
  }
231 232 233 234 235 236

  void Finalize() {
    VLOG(3) << "PSGPUWrapper Begin Finalize.";
    if (s_instance_ == nullptr) {
      return;
    }
W
wangzhen38 已提交
237
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
L
lxsbupt 已提交
238 239 240
    if (FLAGS_gpugraph_storage_mode == GpuGraphStorageMode::WHOLE_HBM) {
      this->EndPass();
    }
W
wangzhen38 已提交
241
#endif
L
lxsbupt 已提交
242 243 244
    for (size_t i = 0; i < hbm_pools_.size(); i++) {
      delete hbm_pools_[i];
    }
245 246
    data_ready_channel_->Close();
    buildcpu_ready_channel_->Close();
L
lxsbupt 已提交
247
    buildpull_ready_channel_->Close();
248 249
    gpu_free_channel_->Close();
    running_ = false;
250 251
    VLOG(3) << "begin stop pre_build_threads_";
    pre_build_threads_.join();
L
lxsbupt 已提交
252 253
    VLOG(3) << "begin stop buildpull_threads_";
    buildpull_threads_.join();
254 255
    s_instance_ = nullptr;
    VLOG(3) << "PSGPUWrapper Finalize Finished.";
L
lxsbupt 已提交
256
    if (HeterPs_ != NULL) {
257
      HeterPs_->show_table_collisions();
L
lxsbupt 已提交
258 259 260
      delete HeterPs_;
      HeterPs_ = NULL;
    }
D
danleifeng 已提交
261 262 263 264
    if (device_caches_ != nullptr) {
      delete[] device_caches_;
      device_caches_ = nullptr;
    }
265 266
  }

T
Thunderbrook 已提交
267
  void InitializeGPU(const std::vector<int>& dev_ids) {
268
    if (s_instance_ != NULL && is_initialized_ == false) {
T
Thunderbrook 已提交
269
      VLOG(3) << "PSGPUWrapper Begin InitializeGPU";
270
      is_initialized_ = true;
T
Thunderbrook 已提交
271 272
      resource_ = std::make_shared<HeterPsResource>(dev_ids);
      resource_->enable_p2p();
273
      keys_tensor.resize(resource_->total_device());
D
danleifeng 已提交
274
      device_caches_ = new PSDeviceData[resource_->total_device()];
Y
yaoxuefeng 已提交
275 276 277 278
#ifdef PADDLE_WITH_GLOO
      auto gloo = paddle::framework::GlooWrapper::GetInstance();
      if (gloo->Size() > 1) {
        multi_node_ = 1;
L
lxsbupt 已提交
279 280 281 282 283 284
        resource_->set_multi_node(multi_node_);
        optimizer_config_.multi_node = true;
        VLOG(0) << "init multi node gpu server";
      } else {
        optimizer_config_.multi_node = false;
        VLOG(0) << "init single node gpu server";
Y
yaoxuefeng 已提交
285 286 287 288 289
      }
#else
      PADDLE_THROW(
          platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
F
Fan Zhang 已提交
290
#ifdef PADDLE_WITH_CUDA
291 292 293 294 295
      if (multi_node_) {
        int dev_size = dev_ids.size();
        // init inner comm
        inner_comms_.resize(dev_size);
        inter_ncclids_.resize(dev_size);
296 297
        platform::dynload::ncclCommInitAll(
            &(inner_comms_[0]), dev_size, &dev_ids[0]);
298 299 300 301 302 303 304 305 306 307
// init inter comm
#ifdef PADDLE_WITH_GLOO
        inter_comms_.resize(dev_size);
        if (gloo->Rank() == 0) {
          for (int i = 0; i < dev_size; ++i) {
            platform::dynload::ncclGetUniqueId(&inter_ncclids_[i]);
          }
        }

        PADDLE_ENFORCE_EQ(
308 309
            gloo->IsInitialized(),
            true,
310 311 312 313 314 315 316
            platform::errors::PreconditionNotMet(
                "You must initialize the gloo environment first to use it."));
        gloo::BroadcastOptions opts(gloo->GetContext());
        opts.setOutput(&inter_ncclids_[0], dev_size);
        opts.setRoot(0);
        gloo::broadcast(opts);

L
lxsbupt 已提交
317
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
318
        for (int i = 0; i < dev_size; ++i) {
L
lxsbupt 已提交
319
          platform::CUDADeviceGuard guard(dev_ids[i]);
320 321
          platform::dynload::ncclCommInitRank(
              &inter_comms_[i], gloo->Size(), inter_ncclids_[i], gloo->Rank());
322
        }
L
lxsbupt 已提交
323 324 325
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

        rank_id_ = gloo->Rank();
326 327 328 329 330 331
        node_size_ = gloo->Size();
#else
        PADDLE_THROW(
            platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
      }
F
Fan Zhang 已提交
332
#endif
Y
yaoxuefeng 已提交
333
      heter_devices_ = dev_ids;
334 335 336 337
      data_ready_channel_->Open();
      data_ready_channel_->SetCapacity(3);
      buildcpu_ready_channel_->Open();
      buildcpu_ready_channel_->SetCapacity(3);
L
lxsbupt 已提交
338 339
      buildpull_ready_channel_->Open();
      buildpull_ready_channel_->SetCapacity(1);
340 341 342
      gpu_free_channel_->Open();
      gpu_free_channel_->SetCapacity(1);

L
lxsbupt 已提交
343 344 345 346 347 348
      cpu_reday_channels_.resize(dev_ids.size());
      for (size_t i = 0; i < dev_ids.size(); i++) {
        cpu_reday_channels_[i] = paddle::framework::MakeChannel<task_info>();
        cpu_reday_channels_[i]->SetCapacity(16);
      }

349 350 351 352
      current_task_ = nullptr;
      gpu_free_channel_->Put(current_task_);

      table_id_ = 0;
353

354 355
      // start build cpu&gpu ps thread
      start_build_thread();
T
Thunderbrook 已提交
356 357
    }
  }
Y
yaoxuefeng 已提交
358

359 360 361 362 363 364
  void SetSparseSGD(float nonclk_coeff,
                    float clk_coeff,
                    float min_bound,
                    float max_bound,
                    float learning_rate,
                    float initial_g2sum,
D
danleifeng 已提交
365 366 367 368
                    float initial_range,
                    float beta1_decay_rate,
                    float beta2_decay_rate,
                    float ada_epsilon);
369 370 371 372 373
  void SetEmbedxSGD(float mf_create_thresholds,
                    float mf_learning_rate,
                    float mf_initial_g2sum,
                    float mf_initial_range,
                    float mf_min_bound,
D
danleifeng 已提交
374 375 376
                    float mf_max_bound,
                    float mf_beta1_decay_rate,
                    float mf_beta2_decay_rate,
D
danleifeng 已提交
377 378 379
                    float mf_ada_epsilon,
                    float nodeid_slot,
                    float feature_learning_rate);
D
danleifeng 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

#ifdef PADDLE_WITH_PSCORE
  void add_sparse_optimizer(
      std::unordered_map<std::string, float>& config,  // NOLINT
      const ::paddle::distributed::SparseCommonSGDRuleParameter& sgd_param,
      const std::string& prefix = "") {
    auto optimizer_name = sgd_param.name();
    if (optimizer_name == "SparseNaiveSGDRule") {
      config[prefix + "optimizer_type"] = 0;
      config[prefix + "learning_rate"] = sgd_param.naive().learning_rate();
      config[prefix + "initial_range"] = sgd_param.naive().initial_range();
      config[prefix + "min_bound"] = sgd_param.naive().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.naive().weight_bounds()[1];
    } else if (optimizer_name == "SparseAdaGradSGDRule") {
      config[prefix + "optimizer_type"] = 1;
      config[prefix + "learning_rate"] = sgd_param.adagrad().learning_rate();
      config[prefix + "initial_range"] = sgd_param.adagrad().initial_range();
      config[prefix + "initial_g2sum"] = sgd_param.adagrad().initial_g2sum();
      config[prefix + "min_bound"] = sgd_param.adagrad().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.adagrad().weight_bounds()[1];
    } else if (optimizer_name == "StdAdaGradSGDRule") {
      config[prefix + "optimizer_type"] = 2;
      config[prefix + "learning_rate"] = sgd_param.adagrad().learning_rate();
      config[prefix + "initial_range"] = sgd_param.adagrad().initial_range();
      config[prefix + "initial_g2sum"] = sgd_param.adagrad().initial_g2sum();
      config[prefix + "min_bound"] = sgd_param.adagrad().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.adagrad().weight_bounds()[1];
    } else if (optimizer_name == "SparseAdamSGDRule") {
      config[prefix + "optimizer_type"] = 3;
      config[prefix + "learning_rate"] = sgd_param.adam().learning_rate();
      config[prefix + "initial_range"] = sgd_param.adam().initial_range();
      config[prefix + "beta1_decay_rate"] = sgd_param.adam().beta1_decay_rate();
      config[prefix + "beta2_decay_rate"] = sgd_param.adam().beta2_decay_rate();
      config[prefix + "ada_epsilon"] = sgd_param.adam().ada_epsilon();
      config[prefix + "min_bound"] = sgd_param.adam().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.adam().weight_bounds()[1];
    } else if (optimizer_name == "SparseSharedAdamSGDRule") {
      config[prefix + "optimizer_type"] = 4;
      config[prefix + "learning_rate"] = sgd_param.adam().learning_rate();
      config[prefix + "initial_range"] = sgd_param.adam().initial_range();
      config[prefix + "beta1_decay_rate"] = sgd_param.adam().beta1_decay_rate();
      config[prefix + "beta2_decay_rate"] = sgd_param.adam().beta2_decay_rate();
      config[prefix + "ada_epsilon"] = sgd_param.adam().ada_epsilon();
      config[prefix + "min_bound"] = sgd_param.adam().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.adam().weight_bounds()[1];
    }
  }

  void InitializeGPUServer(paddle::distributed::PSParameter ps_param) {
    auto sparse_table =
        ps_param.server_param().downpour_server_param().downpour_table_param(0);
D
danleifeng 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    // set build thread_num and shard_num
    thread_keys_thread_num_ = sparse_table.shard_num();
    thread_keys_shard_num_ = sparse_table.shard_num();
    VLOG(1) << "ps_gpu build phase thread_num:" << thread_keys_thread_num_
            << " shard_num:" << thread_keys_shard_num_;

    pull_thread_pool_.resize(thread_keys_shard_num_);
    for (size_t i = 0; i < pull_thread_pool_.size(); i++) {
      pull_thread_pool_[i].reset(new ::ThreadPool(1));
    }
    hbm_thread_pool_.resize(thread_keys_shard_num_);
    for (size_t i = 0; i < hbm_thread_pool_.size(); i++) {
      hbm_thread_pool_[i].reset(new ::ThreadPool(1));
    }

L
lxsbupt 已提交
446 447 448 449 450
    cpu_work_pool_.resize(thread_keys_shard_num_);
    for (size_t i = 0; i < hbm_thread_pool_.size(); i++) {
      cpu_work_pool_[i].reset(new ::ThreadPool(16));
    }

D
danleifeng 已提交
451 452 453 454 455 456 457 458 459 460 461
    auto sparse_table_accessor = sparse_table.accessor();
    auto sparse_table_accessor_parameter =
        sparse_table_accessor.ctr_accessor_param();
    accessor_class_ = sparse_table_accessor.accessor_class();

    std::unordered_map<std::string, float> config;
    config["embedx_dim"] = sparse_table_accessor.embedx_dim();
    config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
    config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
    config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();

D
danleifeng 已提交
462 463 464 465 466
    config["nodeid_slot"] =
        sparse_table_accessor.graph_sgd_param().nodeid_slot();
    config["feature_learning_rate"] =
        sparse_table_accessor.graph_sgd_param().feature_learning_rate();

D
danleifeng 已提交
467 468 469 470 471 472 473 474
    if (accessor_class_ == "CtrDymfAccessor") {
      // optimizer config for embed_w and embedx
      add_sparse_optimizer(config, sparse_table_accessor.embed_sgd_param());
      add_sparse_optimizer(
          config, sparse_table_accessor.embedx_sgd_param(), "mf_");
    }

    fleet_config_ = config;
D
danleifeng 已提交
475 476
    GlobalAccessorFactory::GetInstance().Init(accessor_class_);
    GlobalAccessorFactory::GetInstance().GetAccessorWrapper()->Configure(
D
danleifeng 已提交
477 478 479 480 481
        config);
    InitializeGPUServer(config);
  }
#endif

Y
yaoxuefeng 已提交
482 483 484 485 486 487 488
  void InitializeGPUServer(std::unordered_map<std::string, float> config) {
    float nonclk_coeff = (config.find("nonclk_coeff") == config.end())
                             ? 1.0
                             : config["nonclk_coeff"];
    float clk_coeff =
        (config.find("clk_coeff") == config.end()) ? 1.0 : config["clk_coeff"];
    float min_bound = (config.find("min_bound") == config.end())
D
danleifeng 已提交
489
                          ? -10.0
Y
yaoxuefeng 已提交
490
                          : config["min_bound"];
D
danleifeng 已提交
491 492
    float max_bound =
        (config.find("max_bound") == config.end()) ? 10.0 : config["max_bound"];
Y
yaoxuefeng 已提交
493
    float learning_rate = (config.find("learning_rate") == config.end())
D
danleifeng 已提交
494
                              ? 0.05
Y
yaoxuefeng 已提交
495 496
                              : config["learning_rate"];
    float initial_g2sum = (config.find("initial_g2sum") == config.end())
D
danleifeng 已提交
497
                              ? 3.0
Y
yaoxuefeng 已提交
498 499
                              : config["initial_g2sum"];
    float initial_range = (config.find("initial_range") == config.end())
D
danleifeng 已提交
500
                              ? 1e-4
Y
yaoxuefeng 已提交
501
                              : config["initial_range"];
D
danleifeng 已提交
502 503 504 505 506 507 508 509 510
    float beta1_decay_rate = (config.find("beta1_decay_rate") == config.end())
                                 ? 0.9
                                 : config["beta1_decay_rate"];
    float beta2_decay_rate = (config.find("beta2_decay_rate") == config.end())
                                 ? 0.999
                                 : config["beta2_decay_rate"];
    float ada_epsilon = (config.find("ada_epsilon") == config.end())
                            ? 1e-8
                            : config["ada_epsilon"];
Y
yaoxuefeng 已提交
511 512 513 514 515 516
    // mf config settings
    float mf_create_thresholds =
        (config.find("mf_create_thresholds") == config.end())
            ? static_cast<float>(1.0)
            : config["mf_create_thresholds"];
    float mf_learning_rate = (config.find("mf_learning_rate") == config.end())
D
danleifeng 已提交
517
                                 ? 0.05
Y
yaoxuefeng 已提交
518 519
                                 : config["mf_learning_rate"];
    float mf_initial_g2sum = (config.find("mf_initial_g2sum") == config.end())
D
danleifeng 已提交
520
                                 ? 3.0
Y
yaoxuefeng 已提交
521 522
                                 : config["mf_initial_g2sum"];
    float mf_initial_range = (config.find("mf_initial_range") == config.end())
D
danleifeng 已提交
523
                                 ? 1e-4
Y
yaoxuefeng 已提交
524 525
                                 : config["mf_initial_range"];
    float mf_min_bound = (config.find("mf_min_bound") == config.end())
D
danleifeng 已提交
526
                             ? -10.0
Y
yaoxuefeng 已提交
527 528
                             : config["mf_min_bound"];
    float mf_max_bound = (config.find("mf_max_bound") == config.end())
D
danleifeng 已提交
529
                             ? 10.0
Y
yaoxuefeng 已提交
530
                             : config["mf_max_bound"];
D
danleifeng 已提交
531 532 533 534 535 536 537 538 539 540 541
    float mf_beta1_decay_rate =
        (config.find("mf_beta1_decay_rate") == config.end())
            ? 0.9
            : config["mf_beta1_decay_rate"];
    float mf_beta2_decay_rate =
        (config.find("mf_beta2_decay_rate") == config.end())
            ? 0.999
            : config["mf_beta2_decay_rate"];
    float mf_ada_epsilon = (config.find("mf_ada_epsilon") == config.end())
                               ? 1e-8
                               : config["mf_ada_epsilon"];
D
danleifeng 已提交
542 543 544 545 546 547 548 549 550 551

    float feature_learning_rate =
        (config.find("feature_learning_rate") == config.end())
            ? 0.05
            : config["feature_learning_rate"];

    float nodeid_slot = (config.find("nodeid_slot") == config.end())
                            ? 9008
                            : config["nodeid_slot"];

552 553 554 555 556 557
    this->SetSparseSGD(nonclk_coeff,
                       clk_coeff,
                       min_bound,
                       max_bound,
                       learning_rate,
                       initial_g2sum,
D
danleifeng 已提交
558 559 560 561
                       initial_range,
                       beta1_decay_rate,
                       beta2_decay_rate,
                       ada_epsilon);
562 563 564 565 566
    this->SetEmbedxSGD(mf_create_thresholds,
                       mf_learning_rate,
                       mf_initial_g2sum,
                       mf_initial_range,
                       mf_min_bound,
D
danleifeng 已提交
567 568 569
                       mf_max_bound,
                       mf_beta1_decay_rate,
                       mf_beta2_decay_rate,
D
danleifeng 已提交
570 571 572
                       mf_ada_epsilon,
                       nodeid_slot,
                       feature_learning_rate);
D
danleifeng 已提交
573 574 575 576

    // set optimizer type(naive,adagrad,std_adagrad,adam,share_adam)
    optimizer_type_ = (config.find("optimizer_type") == config.end())
                          ? 1
Z
zmxdream 已提交
577
                          : static_cast<int>(config["optimizer_type"]);
D
danleifeng 已提交
578 579 580 581

    VLOG(0) << "InitializeGPUServer optimizer_type_:" << optimizer_type_
            << " nodeid_slot:" << nodeid_slot
            << " feature_learning_rate:" << feature_learning_rate;
Y
yaoxuefeng 已提交
582
  }
F
Fan Zhang 已提交
583

584 585 586 587 588 589
  void SetDate(int year, int month, int day) {
    year_ = year;
    month_ = month;
    day_ = day;
  }

Y
yaoxuefeng 已提交
590 591
  void SetDataset(Dataset* dataset) { dataset_ = dataset; }

T
Thunderbrook 已提交
592 593
  // PSGPUWrapper singleton
  static std::shared_ptr<PSGPUWrapper> GetInstance() {
594 595 596 597 598
    {
      std::lock_guard<std::mutex> lk(ins_mutex);
      if (NULL == s_instance_) {
        s_instance_.reset(new paddle::framework::PSGPUWrapper());
      }
T
Thunderbrook 已提交
599 600 601 602 603 604 605 606 607
    }
    return s_instance_;
  }
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>& GetLocalTable(
      int table_id) {
    return local_tables_[table_id];
  }
  void SetSlotVector(const std::vector<int>& slot_vector) {
    slot_vector_ = slot_vector;
L
lxsbupt 已提交
608
    VLOG(0) << "slot_vector size is " << slot_vector_.size();
T
Thunderbrook 已提交
609
  }
610 611 612 613
  void SetPullFeatureSlotNum(int slot_num) {
    slot_num_for_pull_feature_ = slot_num;
    VLOG(0) << "slot_num_for_pull_feature_ is " << slot_num_for_pull_feature_;
  }
Y
yaoxuefeng 已提交
614 615
  void SetSlotOffsetVector(const std::vector<int>& slot_offset_vector) {
    slot_offset_vector_ = slot_offset_vector;
Y
yaoxuefeng 已提交
616 617 618 619 620
    std::cout << "yxf set: ";
    for (auto s : slot_offset_vector_) {
      std::cout << s << " | ";
    }
    std::cout << " end " << std::endl;
Y
yaoxuefeng 已提交
621 622
  }

F
Fan Zhang 已提交
623
#ifdef PADDLE_WITH_CUDA
Y
yaoxuefeng 已提交
624 625 626
  void SetSlotDimVector(const std::vector<int>& slot_mf_dim_vector) {
    slot_mf_dim_vector_ = slot_mf_dim_vector;
    assert(slot_mf_dim_vector_.size() == slot_vector_.size());
Y
yaoxuefeng 已提交
627 628 629 630 631 632
  }

  void InitSlotInfo() {
    if (slot_info_initialized_) {
      return;
    }
Z
zmxdream 已提交
633
    SlotRecordDataset* dataset = reinterpret_cast<SlotRecordDataset*>(dataset_);
Y
yaoxuefeng 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    auto slots_vec = dataset->GetSlots();
    slot_offset_vector_.clear();
    for (auto& slot : slot_vector_) {
      for (size_t i = 0; i < slots_vec.size(); ++i) {
        if (std::to_string(slot) == slots_vec[i]) {
          slot_offset_vector_.push_back(i);
          break;
        }
      }
    }
    std::cout << "psgpu wrapper use slots: ";
    for (auto s : slot_offset_vector_) {
      std::cout << s << " | ";
    }
    std::cout << " end " << std::endl;
    for (size_t i = 0; i < slot_mf_dim_vector_.size(); i++) {
Y
yaoxuefeng 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
      slot_dim_map_[slot_vector_[i]] = slot_mf_dim_vector_[i];
    }

    std::unordered_set<int> dims_set;
    for (auto& it : slot_dim_map_) {
      dims_set.insert(it.second);
    }
    size_t num_of_dim = dims_set.size();
    index_dim_vec_.resize(num_of_dim);
    index_dim_vec_.assign(dims_set.begin(), dims_set.end());
    std::sort(index_dim_vec_.begin(), index_dim_vec_.end());
    std::unordered_map<int, int> dim_index_map;
    for (size_t i = 0; i < num_of_dim; i++) {
      dim_index_map[index_dim_vec_[i]] = i;
    }
665
    hbm_pools_.resize(resource_->total_device() * num_of_dim);
L
lxsbupt 已提交
666 667 668 669
    for (size_t i = 0; i < hbm_pools_.size(); i++) {
      hbm_pools_[i] = new HBMMemoryPoolFix();
    }

670
    mem_pools_.resize(resource_->total_device() * num_of_dim);
Y
yaoxuefeng 已提交
671 672 673 674 675 676 677
    max_mf_dim_ = index_dim_vec_.back();
    multi_mf_dim_ = (dim_index_map.size() >= 1) ? dim_index_map.size() : 0;
    resource_->set_multi_mf(multi_mf_dim_, max_mf_dim_);
    slot_index_vec_.resize(slot_mf_dim_vector_.size());
    for (size_t i = 0; i < slot_index_vec_.size(); i++) {
      slot_index_vec_[i] = dim_index_map[slot_mf_dim_vector_[i]];
    }
D
danleifeng 已提交
678 679

    auto accessor_wrapper_ptr =
D
danleifeng 已提交
680
        GlobalAccessorFactory::GetInstance().GetAccessorWrapper();
D
danleifeng 已提交
681 682
    val_type_size_ = accessor_wrapper_ptr->GetFeatureValueSize(max_mf_dim_);
    grad_type_size_ = accessor_wrapper_ptr->GetPushValueSize(max_mf_dim_);
D
danleifeng 已提交
683
    pull_type_size_ = accessor_wrapper_ptr->GetPullValueSize(max_mf_dim_);
D
danleifeng 已提交
684
    VLOG(0) << "InitSlotInfo: val_type_size_" << val_type_size_
D
danleifeng 已提交
685 686
            << " grad_type_size_:" << grad_type_size_
            << " pull_type_size_:" << pull_type_size_;
Y
yaoxuefeng 已提交
687
    slot_info_initialized_ = true;
Y
yaoxuefeng 已提交
688
  }
F
Fan Zhang 已提交
689
#endif
Y
yaoxuefeng 已提交
690

T
Thunderbrook 已提交
691 692
  void ShowOneTable(int index) { HeterPs_->show_one_table(index); }

T
Thunderbrook 已提交
693 694 695 696 697 698 699 700
  int UseAfsApi() { return use_afs_api_; }

#ifdef PADDLE_WITH_PSLIB
  std::shared_ptr<paddle::ps::AfsReader> OpenReader(
      const std::string& filename) {
    return afs_handler_.open_reader(filename);
  }

Z
zmxdream 已提交
701 702 703 704 705
  std::shared_ptr<paddle::ps::AfsWriter> OpenWriter(
      const std::string& filename) {
    return afs_handler_.open_writer(filename);
  }

706 707 708 709
  void InitAfsApi(const std::string& fs_name,
                  const std::string& fs_user,
                  const std::string& pass_wd,
                  const std::string& conf);
T
Thunderbrook 已提交
710 711
#endif

D
danleifeng 已提交
712 713 714 715 716 717
#ifdef PADDLE_WITH_PSCORE
  void SetTableAccessor(paddle::distributed::ValueAccessor* accessor) {
    cpu_table_accessor_ = accessor;
  }
#endif

T
Thunderbrook 已提交
718 719
 private:
  static std::shared_ptr<PSGPUWrapper> s_instance_;
720
  static std::mutex ins_mutex;
Y
yaoxuefeng 已提交
721
  Dataset* dataset_;
T
Thunderbrook 已提交
722 723 724
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::AfsApiWrapper afs_handler_;
#endif
T
Thunderbrook 已提交
725
  std::unordered_map<
726 727
      uint64_t,
      std::vector<std::unordered_map<uint64_t, std::vector<float>>>>
T
Thunderbrook 已提交
728
      local_tables_;
L
lxsbupt 已提交
729 730
  HeterPsBase* HeterPs_ = NULL;
  // std::vector<LoDTensor> keys_tensor;  // Cache for pull_sparse
731
  std::vector<phi::DenseTensor> keys_tensor;  // Cache for pull_sparse
T
Thunderbrook 已提交
732 733 734
  std::shared_ptr<HeterPsResource> resource_;
  int32_t sleep_seconds_before_fail_exit_;
  std::vector<int> slot_vector_;
Y
yaoxuefeng 已提交
735 736 737 738 739 740 741
  std::vector<int> slot_offset_vector_;
  std::vector<int> slot_mf_dim_vector_;
  std::unordered_map<int, int> slot_dim_map_;
  std::vector<int> slot_index_vec_;
  std::vector<int> index_dim_vec_;
  int multi_mf_dim_{0};
  int max_mf_dim_{0};
742
  int slot_num_for_pull_feature_{0};
Y
yaoxuefeng 已提交
743 744
  size_t val_type_size_{0};
  size_t grad_type_size_{0};
D
danleifeng 已提交
745
  size_t pull_type_size_{0};
Y
yaoxuefeng 已提交
746 747 748 749 750 751

  double time_1 = 0.0;
  double time_2 = 0.0;
  double time_3 = 0.0;
  double time_4 = 0.0;

T
Thunderbrook 已提交
752
  int multi_node_{0};
L
lxsbupt 已提交
753
  int rank_id_;
754
  int node_size_;
755
  uint64_t table_id_;
D
danleifeng 已提交
756
  int gpu_graph_mode_ = 0;
F
Fan Zhang 已提交
757
#ifdef PADDLE_WITH_CUDA
758 759 760
  std::vector<ncclComm_t> inner_comms_;
  std::vector<ncclComm_t> inter_comms_;
  std::vector<ncclUniqueId> inter_ncclids_;
F
Fan Zhang 已提交
761
#endif
Y
yaoxuefeng 已提交
762 763 764
  std::vector<int> heter_devices_;
  std::unordered_set<std::string> gpu_ps_config_keys_;
  HeterObjectPool<HeterContext> gpu_task_pool_;
765
  std::vector<std::vector<robin_hood::unordered_set<uint64_t>>> thread_keys_;
766 767
  std::vector<std::vector<std::vector<robin_hood::unordered_set<uint64_t>>>>
      thread_dim_keys_;
Y
yaoxuefeng 已提交
768 769 770
  int thread_keys_thread_num_ = 37;
  int thread_keys_shard_num_ = 37;
  uint64_t max_fea_num_per_pass_ = 5000000000;
771 772 773
  int year_;
  int month_;
  int day_;
Y
yaoxuefeng 已提交
774
  bool slot_info_initialized_ = false;
L
lxsbupt 已提交
775
  bool hbm_sparse_table_initialized_ = false;
T
Thunderbrook 已提交
776
  int use_afs_api_ = 0;
D
danleifeng 已提交
777 778 779 780 781 782
  int optimizer_type_ = 1;
  std::string accessor_class_;
  std::unordered_map<std::string, float> fleet_config_;
#ifdef PADDLE_WITH_PSCORE
  paddle::distributed::ValueAccessor* cpu_table_accessor_;
#endif
T
Thunderbrook 已提交
783

F
Fan Zhang 已提交
784
#ifdef PADDLE_WITH_CUDA
Y
yaoxuefeng 已提交
785
  std::vector<MemoryPool*> mem_pools_;
L
lxsbupt 已提交
786 787
  std::vector<HBMMemoryPoolFix*> hbm_pools_;  // in multi mfdim, one table need
                                              // hbm pools of totol dims number
F
Fan Zhang 已提交
788
#endif
Y
yaoxuefeng 已提交
789

790 791 792 793
  std::shared_ptr<paddle::framework::ChannelObject<
      std::pair<std::shared_ptr<HeterContext>, Dataset*>>>
      data_ready_channel_ = paddle::framework::MakeChannel<
          std::pair<std::shared_ptr<HeterContext>, Dataset*>>();
794 795 796 797 798 799 800 801
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      buildcpu_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      gpu_free_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
L
lxsbupt 已提交
802 803 804 805 806 807
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      buildpull_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::vector<std::shared_ptr<paddle::framework::ChannelObject<task_info>>>
      cpu_reday_channels_;
808
  std::shared_ptr<HeterContext> current_task_ = nullptr;
809
  std::thread pre_build_threads_;
L
lxsbupt 已提交
810
  std::thread buildpull_threads_;
811
  bool running_ = false;
Y
yaoxuefeng 已提交
812
  std::vector<std::shared_ptr<ThreadPool>> pull_thread_pool_;
T
Thunderbrook 已提交
813
  std::vector<std::shared_ptr<ThreadPool>> hbm_thread_pool_;
L
lxsbupt 已提交
814
  std::vector<std::shared_ptr<ThreadPool>> cpu_work_pool_;
D
danleifeng 已提交
815
  OptimizerConfig optimizer_config_;
L
lxsbupt 已提交
816 817 818 819
  // gradient push count
  uint64_t grad_push_count_ = 0;
  // infer mode
  bool infer_mode_ = false;
820

T
Thunderbrook 已提交
821 822 823 824 825 826 827
 protected:
  static bool is_initialized_;
};

}  // end namespace framework
}  // end namespace paddle
#endif