ps_gpu_wrapper.h 29.9 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
Thunderbrook 已提交
16
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
17 18 19 20 21

#include <atomic>
#include <ctime>
#include <map>
#include <memory>
22
#include <mutex>
T
Thunderbrook 已提交
23 24 25
#include <random>
#include <string>
#include <unordered_map>
Y
yaoxuefeng 已提交
26
#include <unordered_set>
T
Thunderbrook 已提交
27
#include <vector>
28 29
#ifdef PADDLE_WITH_GLOO
#include <gloo/broadcast.h>
30

Y
yaoxuefeng 已提交
31
#include "paddle/fluid/framework/data_set.h"
32 33
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
34
#include "paddle/fluid/distributed/ps/thirdparty/round_robin.h"
F
Fan Zhang 已提交
35
#include "paddle/fluid/framework/channel.h"
T
Thunderbrook 已提交
36
#include "paddle/fluid/framework/fleet/heter_context.h"
L
lxsbupt 已提交
37
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_wrapper.h"
T
Thunderbrook 已提交
38 39
#include "paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
F
Fan Zhang 已提交
40 41
#include "paddle/fluid/framework/heter_util.h"
#ifdef PADDLE_WITH_CUDA
Y
yaoxuefeng 已提交
42
#include "paddle/fluid/framework/fleet/heter_ps/mem_pool.h"
F
Fan Zhang 已提交
43 44 45 46 47 48
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#endif
#ifdef PADDLE_WITH_XPU_KP
#include "paddle/fluid/platform/device/xpu/enforce_xpu.h"
#endif
T
Thunderbrook 已提交
49 50 51 52 53
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN
#include "paddle/fluid/platform/place.h"
T
Thunderbrook 已提交
54
#ifdef PADDLE_WITH_PSCORE
D
danleifeng 已提交
55 56
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/ctr_dymf_accessor.h"
57
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
D
danleifeng 已提交
58
#include "paddle/fluid/distributed/the_one_ps.pb.h"
T
Thunderbrook 已提交
59
#endif
T
Thunderbrook 已提交
60
#ifdef PADDLE_WITH_PSLIB
Z
zmxdream 已提交
61
#include "afs_api.h"  // NOLINT
T
Thunderbrook 已提交
62
#endif
Y
yaoxuefeng 已提交
63 64 65
#ifdef PADDLE_WITH_PSLIB
#include "downpour_accessor.h"  // NOLINT
#endif
66
#include "paddle/fluid/framework/fleet/heter_ps/log_patch.h"
L
lxsbupt 已提交
67
DECLARE_int32(gpugraph_storage_mode);
T
Thunderbrook 已提交
68 69 70 71

namespace paddle {
namespace framework {

F
Fan Zhang 已提交
72 73
class Dataset;

T
Thunderbrook 已提交
74 75 76 77 78
#ifdef PADDLE_WITH_PSLIB
class AfsWrapper {
 public:
  AfsWrapper() {}
  virtual ~AfsWrapper() {}
79 80 81 82
  void init(const std::string& fs_name,
            const std::string& fs_user,
            const std::string& pass_wd,
            const std::string& conf);
T
Thunderbrook 已提交
83 84 85 86 87 88 89 90 91
  int remove(const std::string& path);
  int mkdir(const std::string& path);
  std::vector<std::string> list(const std::string& path);

  int exist(const std::string& path);
  int upload(const std::string& local_file, const std::string& afs_file);

  int download(const std::string& local_file, const std::string& afs_file);

92 93 94 95
  int touchz(const std::string& path);
  std::string cat(const std::string& path);
  int mv(const std::string& old_path, const std::string& dest_path);

T
Thunderbrook 已提交
96 97 98 99 100
 private:
  paddle::ps::AfsApiWrapper afs_handler_;
};
#endif

L
lxsbupt 已提交
101 102 103 104 105 106 107 108 109
struct task_info {
  std::shared_ptr<char> build_values;
  size_t offset;
  int device_id;
  int multi_mf_dim;
  int start;
  int end;
};

T
Thunderbrook 已提交
110
class PSGPUWrapper {
D
danleifeng 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  class DCacheBuffer {
   public:
    DCacheBuffer() : buf_(nullptr) {}
    ~DCacheBuffer() {}
    /**
     * @Brief get data
     */
    template <typename T>
    T* mutable_data(const size_t total_bytes,
                    const paddle::platform::Place& place) {
      if (buf_ == nullptr) {
        buf_ = memory::AllocShared(place, total_bytes);
      } else if (buf_->size() < total_bytes) {
        buf_.reset();
        buf_ = memory::AllocShared(place, total_bytes);
      }
      return reinterpret_cast<T*>(buf_->ptr());
    }
    template <typename T>
    T* data() {
      return reinterpret_cast<T*>(buf_->ptr());
    }
    size_t memory_size() {
      if (buf_ == nullptr) {
        return 0;
      }
      return buf_->size();
    }
    bool IsInitialized(void) { return (buf_ != nullptr); }

   private:
    std::shared_ptr<memory::Allocation> buf_ = nullptr;
  };
  struct PSDeviceData {
    DCacheBuffer keys_tensor;
    DCacheBuffer dims_tensor;
    DCacheBuffer keys_ptr_tensor;
    DCacheBuffer values_ptr_tensor;
    DCacheBuffer pull_push_tensor;

    DCacheBuffer slot_lens;
    DCacheBuffer d_slot_vector;
    DCacheBuffer keys2slot;

    int64_t total_key_length = 0;
    int64_t dedup_key_length = 0;
  };
  PSDeviceData* device_caches_ = nullptr;

T
Thunderbrook 已提交
160
 public:
D
danleifeng 已提交
161
  ~PSGPUWrapper();
T
Thunderbrook 已提交
162 163 164 165 166 167

  PSGPUWrapper() {
    HeterPs_ = NULL;
    sleep_seconds_before_fail_exit_ = 300;
  }

168 169
  void PullSparse(const paddle::platform::Place& place,
                  const int table_id,
Y
yaoxuefeng 已提交
170 171 172
                  const std::vector<const uint64_t*>& keys,
                  const std::vector<float*>& values,
                  const std::vector<int64_t>& slot_lengths,
173 174 175 176
                  const std::vector<int>& slot_dim,
                  const int hidden_size);
  void PullSparse(const paddle::platform::Place& place,
                  const int table_id,
T
Thunderbrook 已提交
177 178 179 180
                  const std::vector<const uint64_t*>& keys,
                  const std::vector<float*>& values,
                  const std::vector<int64_t>& slot_lengths,
                  const int hidden_size);
181 182
  void PushSparseGrad(const paddle::platform::Place& place,
                      const int table_id,
T
Thunderbrook 已提交
183 184 185
                      const std::vector<const uint64_t*>& keys,
                      const std::vector<const float*>& grad_values,
                      const std::vector<int64_t>& slot_lengths,
186 187 188 189 190 191 192
                      const int hidden_size,
                      const int batch_size);
  void CopyKeys(const paddle::platform::Place& place,
                uint64_t** origin_keys,
                uint64_t* total_keys,
                const int64_t* gpu_len,
                int slot_num,
T
Thunderbrook 已提交
193
                int total_len);
D
danleifeng 已提交
194 195 196 197 198 199 200
  void CopyKeys(const paddle::platform::Place& place,
                uint64_t** origin_keys,
                uint64_t* total_keys,
                const int64_t* gpu_len,
                int slot_num,
                int total_len,
                int* key2slot);
T
Thunderbrook 已提交
201

L
lxsbupt 已提交
202 203
  void divide_to_device(std::shared_ptr<HeterContext> gpu_task);
  void add_slot_feature(std::shared_ptr<HeterContext> gpu_task);
204
  void BuildGPUTask(std::shared_ptr<HeterContext> gpu_task);
205 206
  void PreBuildTask(std::shared_ptr<HeterContext> gpu_task);
  void BuildPull(std::shared_ptr<HeterContext> gpu_task);
L
lxsbupt 已提交
207
  void PrepareGPUTask(std::shared_ptr<HeterContext> gpu_task);
208 209 210
  void LoadIntoMemory(bool is_shuffle);
  void BeginPass();
  void EndPass();
L
lxsbupt 已提交
211 212 213 214 215
  void add_key_to_local(const std::vector<uint64_t>& keys);
  void add_key_to_gputask(std::shared_ptr<HeterContext> gpu_task);
  void resize_gputask(std::shared_ptr<HeterContext> gpu_task);
  void SparseTableToHbm();
  void HbmToSparseTable();
216
  void start_build_thread();
217
  void pre_build_thread();
L
lxsbupt 已提交
218
  void build_pull_thread();
219
  void build_task();
L
lxsbupt 已提交
220 221 222 223 224 225 226 227 228
  void DumpToMem();
  // set mode
  void SetMode(bool infer_mode) {
    infer_mode_ = infer_mode;
    if (HeterPs_ != NULL) {
      HeterPs_->set_mode(infer_mode);
    }
    VLOG(0) << "set infer mode=" << infer_mode;
  }
229 230 231 232 233 234

  void Finalize() {
    VLOG(3) << "PSGPUWrapper Begin Finalize.";
    if (s_instance_ == nullptr) {
      return;
    }
W
wangzhen38 已提交
235
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
L
lxsbupt 已提交
236 237 238
    if (FLAGS_gpugraph_storage_mode == GpuGraphStorageMode::WHOLE_HBM) {
      this->EndPass();
    }
W
wangzhen38 已提交
239
#endif
L
lxsbupt 已提交
240 241 242
    for (size_t i = 0; i < hbm_pools_.size(); i++) {
      delete hbm_pools_[i];
    }
243 244
    data_ready_channel_->Close();
    buildcpu_ready_channel_->Close();
L
lxsbupt 已提交
245
    buildpull_ready_channel_->Close();
246 247
    gpu_free_channel_->Close();
    running_ = false;
248 249
    VLOG(3) << "begin stop pre_build_threads_";
    pre_build_threads_.join();
L
lxsbupt 已提交
250 251
    VLOG(3) << "begin stop buildpull_threads_";
    buildpull_threads_.join();
252 253
    s_instance_ = nullptr;
    VLOG(3) << "PSGPUWrapper Finalize Finished.";
D
danleifeng 已提交
254
    HeterPs_->show_table_collisions();
L
lxsbupt 已提交
255 256 257 258
    if (HeterPs_ != NULL) {
      delete HeterPs_;
      HeterPs_ = NULL;
    }
D
danleifeng 已提交
259 260 261 262
    if (device_caches_ != nullptr) {
      delete[] device_caches_;
      device_caches_ = nullptr;
    }
263 264
  }

T
Thunderbrook 已提交
265
  void InitializeGPU(const std::vector<int>& dev_ids) {
266
    if (s_instance_ != NULL && is_initialized_ == false) {
T
Thunderbrook 已提交
267
      VLOG(3) << "PSGPUWrapper Begin InitializeGPU";
268
      is_initialized_ = true;
T
Thunderbrook 已提交
269 270
      resource_ = std::make_shared<HeterPsResource>(dev_ids);
      resource_->enable_p2p();
271
      keys_tensor.resize(resource_->total_device());
D
danleifeng 已提交
272
      device_caches_ = new PSDeviceData[resource_->total_device()];
Y
yaoxuefeng 已提交
273 274 275 276
#ifdef PADDLE_WITH_GLOO
      auto gloo = paddle::framework::GlooWrapper::GetInstance();
      if (gloo->Size() > 1) {
        multi_node_ = 1;
L
lxsbupt 已提交
277 278 279 280 281 282
        resource_->set_multi_node(multi_node_);
        optimizer_config_.multi_node = true;
        VLOG(0) << "init multi node gpu server";
      } else {
        optimizer_config_.multi_node = false;
        VLOG(0) << "init single node gpu server";
Y
yaoxuefeng 已提交
283 284 285 286 287
      }
#else
      PADDLE_THROW(
          platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
F
Fan Zhang 已提交
288
#ifdef PADDLE_WITH_CUDA
289 290 291 292 293
      if (multi_node_) {
        int dev_size = dev_ids.size();
        // init inner comm
        inner_comms_.resize(dev_size);
        inter_ncclids_.resize(dev_size);
294 295
        platform::dynload::ncclCommInitAll(
            &(inner_comms_[0]), dev_size, &dev_ids[0]);
296 297 298 299 300 301 302 303 304 305
// init inter comm
#ifdef PADDLE_WITH_GLOO
        inter_comms_.resize(dev_size);
        if (gloo->Rank() == 0) {
          for (int i = 0; i < dev_size; ++i) {
            platform::dynload::ncclGetUniqueId(&inter_ncclids_[i]);
          }
        }

        PADDLE_ENFORCE_EQ(
306 307
            gloo->IsInitialized(),
            true,
308 309 310 311 312 313 314
            platform::errors::PreconditionNotMet(
                "You must initialize the gloo environment first to use it."));
        gloo::BroadcastOptions opts(gloo->GetContext());
        opts.setOutput(&inter_ncclids_[0], dev_size);
        opts.setRoot(0);
        gloo::broadcast(opts);

L
lxsbupt 已提交
315
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
316
        for (int i = 0; i < dev_size; ++i) {
L
lxsbupt 已提交
317
          platform::CUDADeviceGuard guard(dev_ids[i]);
318 319
          platform::dynload::ncclCommInitRank(
              &inter_comms_[i], gloo->Size(), inter_ncclids_[i], gloo->Rank());
320
        }
L
lxsbupt 已提交
321 322 323
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

        rank_id_ = gloo->Rank();
324 325 326 327 328 329
        node_size_ = gloo->Size();
#else
        PADDLE_THROW(
            platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
      }
F
Fan Zhang 已提交
330
#endif
Y
yaoxuefeng 已提交
331
      heter_devices_ = dev_ids;
332 333 334 335
      data_ready_channel_->Open();
      data_ready_channel_->SetCapacity(3);
      buildcpu_ready_channel_->Open();
      buildcpu_ready_channel_->SetCapacity(3);
L
lxsbupt 已提交
336 337
      buildpull_ready_channel_->Open();
      buildpull_ready_channel_->SetCapacity(1);
338 339 340
      gpu_free_channel_->Open();
      gpu_free_channel_->SetCapacity(1);

L
lxsbupt 已提交
341 342 343 344 345 346
      cpu_reday_channels_.resize(dev_ids.size());
      for (size_t i = 0; i < dev_ids.size(); i++) {
        cpu_reday_channels_[i] = paddle::framework::MakeChannel<task_info>();
        cpu_reday_channels_[i]->SetCapacity(16);
      }

347 348 349 350
      current_task_ = nullptr;
      gpu_free_channel_->Put(current_task_);

      table_id_ = 0;
351

352 353
      // start build cpu&gpu ps thread
      start_build_thread();
T
Thunderbrook 已提交
354 355
    }
  }
Y
yaoxuefeng 已提交
356

357 358 359 360 361 362
  void SetSparseSGD(float nonclk_coeff,
                    float clk_coeff,
                    float min_bound,
                    float max_bound,
                    float learning_rate,
                    float initial_g2sum,
D
danleifeng 已提交
363 364 365 366
                    float initial_range,
                    float beta1_decay_rate,
                    float beta2_decay_rate,
                    float ada_epsilon);
367 368 369 370 371
  void SetEmbedxSGD(float mf_create_thresholds,
                    float mf_learning_rate,
                    float mf_initial_g2sum,
                    float mf_initial_range,
                    float mf_min_bound,
D
danleifeng 已提交
372 373 374
                    float mf_max_bound,
                    float mf_beta1_decay_rate,
                    float mf_beta2_decay_rate,
D
danleifeng 已提交
375 376 377
                    float mf_ada_epsilon,
                    float nodeid_slot,
                    float feature_learning_rate);
D
danleifeng 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

#ifdef PADDLE_WITH_PSCORE
  void add_sparse_optimizer(
      std::unordered_map<std::string, float>& config,  // NOLINT
      const ::paddle::distributed::SparseCommonSGDRuleParameter& sgd_param,
      const std::string& prefix = "") {
    auto optimizer_name = sgd_param.name();
    if (optimizer_name == "SparseNaiveSGDRule") {
      config[prefix + "optimizer_type"] = 0;
      config[prefix + "learning_rate"] = sgd_param.naive().learning_rate();
      config[prefix + "initial_range"] = sgd_param.naive().initial_range();
      config[prefix + "min_bound"] = sgd_param.naive().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.naive().weight_bounds()[1];
    } else if (optimizer_name == "SparseAdaGradSGDRule") {
      config[prefix + "optimizer_type"] = 1;
      config[prefix + "learning_rate"] = sgd_param.adagrad().learning_rate();
      config[prefix + "initial_range"] = sgd_param.adagrad().initial_range();
      config[prefix + "initial_g2sum"] = sgd_param.adagrad().initial_g2sum();
      config[prefix + "min_bound"] = sgd_param.adagrad().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.adagrad().weight_bounds()[1];
    } else if (optimizer_name == "StdAdaGradSGDRule") {
      config[prefix + "optimizer_type"] = 2;
      config[prefix + "learning_rate"] = sgd_param.adagrad().learning_rate();
      config[prefix + "initial_range"] = sgd_param.adagrad().initial_range();
      config[prefix + "initial_g2sum"] = sgd_param.adagrad().initial_g2sum();
      config[prefix + "min_bound"] = sgd_param.adagrad().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.adagrad().weight_bounds()[1];
    } else if (optimizer_name == "SparseAdamSGDRule") {
      config[prefix + "optimizer_type"] = 3;
      config[prefix + "learning_rate"] = sgd_param.adam().learning_rate();
      config[prefix + "initial_range"] = sgd_param.adam().initial_range();
      config[prefix + "beta1_decay_rate"] = sgd_param.adam().beta1_decay_rate();
      config[prefix + "beta2_decay_rate"] = sgd_param.adam().beta2_decay_rate();
      config[prefix + "ada_epsilon"] = sgd_param.adam().ada_epsilon();
      config[prefix + "min_bound"] = sgd_param.adam().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.adam().weight_bounds()[1];
    } else if (optimizer_name == "SparseSharedAdamSGDRule") {
      config[prefix + "optimizer_type"] = 4;
      config[prefix + "learning_rate"] = sgd_param.adam().learning_rate();
      config[prefix + "initial_range"] = sgd_param.adam().initial_range();
      config[prefix + "beta1_decay_rate"] = sgd_param.adam().beta1_decay_rate();
      config[prefix + "beta2_decay_rate"] = sgd_param.adam().beta2_decay_rate();
      config[prefix + "ada_epsilon"] = sgd_param.adam().ada_epsilon();
      config[prefix + "min_bound"] = sgd_param.adam().weight_bounds()[0];
      config[prefix + "max_bound"] = sgd_param.adam().weight_bounds()[1];
    }
  }

  void InitializeGPUServer(paddle::distributed::PSParameter ps_param) {
    auto sparse_table =
        ps_param.server_param().downpour_server_param().downpour_table_param(0);
D
danleifeng 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    // set build thread_num and shard_num
    thread_keys_thread_num_ = sparse_table.shard_num();
    thread_keys_shard_num_ = sparse_table.shard_num();
    VLOG(1) << "ps_gpu build phase thread_num:" << thread_keys_thread_num_
            << " shard_num:" << thread_keys_shard_num_;

    pull_thread_pool_.resize(thread_keys_shard_num_);
    for (size_t i = 0; i < pull_thread_pool_.size(); i++) {
      pull_thread_pool_[i].reset(new ::ThreadPool(1));
    }
    hbm_thread_pool_.resize(thread_keys_shard_num_);
    for (size_t i = 0; i < hbm_thread_pool_.size(); i++) {
      hbm_thread_pool_[i].reset(new ::ThreadPool(1));
    }

L
lxsbupt 已提交
444 445 446 447 448
    cpu_work_pool_.resize(thread_keys_shard_num_);
    for (size_t i = 0; i < hbm_thread_pool_.size(); i++) {
      cpu_work_pool_[i].reset(new ::ThreadPool(16));
    }

D
danleifeng 已提交
449 450 451 452 453 454 455 456 457 458 459
    auto sparse_table_accessor = sparse_table.accessor();
    auto sparse_table_accessor_parameter =
        sparse_table_accessor.ctr_accessor_param();
    accessor_class_ = sparse_table_accessor.accessor_class();

    std::unordered_map<std::string, float> config;
    config["embedx_dim"] = sparse_table_accessor.embedx_dim();
    config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
    config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
    config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();

D
danleifeng 已提交
460 461 462 463 464
    config["nodeid_slot"] =
        sparse_table_accessor.graph_sgd_param().nodeid_slot();
    config["feature_learning_rate"] =
        sparse_table_accessor.graph_sgd_param().feature_learning_rate();

D
danleifeng 已提交
465 466 467 468 469 470 471 472
    if (accessor_class_ == "CtrDymfAccessor") {
      // optimizer config for embed_w and embedx
      add_sparse_optimizer(config, sparse_table_accessor.embed_sgd_param());
      add_sparse_optimizer(
          config, sparse_table_accessor.embedx_sgd_param(), "mf_");
    }

    fleet_config_ = config;
D
danleifeng 已提交
473 474
    GlobalAccessorFactory::GetInstance().Init(accessor_class_);
    GlobalAccessorFactory::GetInstance().GetAccessorWrapper()->Configure(
D
danleifeng 已提交
475 476 477 478 479
        config);
    InitializeGPUServer(config);
  }
#endif

Y
yaoxuefeng 已提交
480 481 482 483 484 485 486
  void InitializeGPUServer(std::unordered_map<std::string, float> config) {
    float nonclk_coeff = (config.find("nonclk_coeff") == config.end())
                             ? 1.0
                             : config["nonclk_coeff"];
    float clk_coeff =
        (config.find("clk_coeff") == config.end()) ? 1.0 : config["clk_coeff"];
    float min_bound = (config.find("min_bound") == config.end())
D
danleifeng 已提交
487
                          ? -10.0
Y
yaoxuefeng 已提交
488
                          : config["min_bound"];
D
danleifeng 已提交
489 490
    float max_bound =
        (config.find("max_bound") == config.end()) ? 10.0 : config["max_bound"];
Y
yaoxuefeng 已提交
491
    float learning_rate = (config.find("learning_rate") == config.end())
D
danleifeng 已提交
492
                              ? 0.05
Y
yaoxuefeng 已提交
493 494
                              : config["learning_rate"];
    float initial_g2sum = (config.find("initial_g2sum") == config.end())
D
danleifeng 已提交
495
                              ? 3.0
Y
yaoxuefeng 已提交
496 497
                              : config["initial_g2sum"];
    float initial_range = (config.find("initial_range") == config.end())
D
danleifeng 已提交
498
                              ? 1e-4
Y
yaoxuefeng 已提交
499
                              : config["initial_range"];
D
danleifeng 已提交
500 501 502 503 504 505 506 507 508
    float beta1_decay_rate = (config.find("beta1_decay_rate") == config.end())
                                 ? 0.9
                                 : config["beta1_decay_rate"];
    float beta2_decay_rate = (config.find("beta2_decay_rate") == config.end())
                                 ? 0.999
                                 : config["beta2_decay_rate"];
    float ada_epsilon = (config.find("ada_epsilon") == config.end())
                            ? 1e-8
                            : config["ada_epsilon"];
Y
yaoxuefeng 已提交
509 510 511 512 513 514
    // mf config settings
    float mf_create_thresholds =
        (config.find("mf_create_thresholds") == config.end())
            ? static_cast<float>(1.0)
            : config["mf_create_thresholds"];
    float mf_learning_rate = (config.find("mf_learning_rate") == config.end())
D
danleifeng 已提交
515
                                 ? 0.05
Y
yaoxuefeng 已提交
516 517
                                 : config["mf_learning_rate"];
    float mf_initial_g2sum = (config.find("mf_initial_g2sum") == config.end())
D
danleifeng 已提交
518
                                 ? 3.0
Y
yaoxuefeng 已提交
519 520
                                 : config["mf_initial_g2sum"];
    float mf_initial_range = (config.find("mf_initial_range") == config.end())
D
danleifeng 已提交
521
                                 ? 1e-4
Y
yaoxuefeng 已提交
522 523
                                 : config["mf_initial_range"];
    float mf_min_bound = (config.find("mf_min_bound") == config.end())
D
danleifeng 已提交
524
                             ? -10.0
Y
yaoxuefeng 已提交
525 526
                             : config["mf_min_bound"];
    float mf_max_bound = (config.find("mf_max_bound") == config.end())
D
danleifeng 已提交
527
                             ? 10.0
Y
yaoxuefeng 已提交
528
                             : config["mf_max_bound"];
D
danleifeng 已提交
529 530 531 532 533 534 535 536 537 538 539
    float mf_beta1_decay_rate =
        (config.find("mf_beta1_decay_rate") == config.end())
            ? 0.9
            : config["mf_beta1_decay_rate"];
    float mf_beta2_decay_rate =
        (config.find("mf_beta2_decay_rate") == config.end())
            ? 0.999
            : config["mf_beta2_decay_rate"];
    float mf_ada_epsilon = (config.find("mf_ada_epsilon") == config.end())
                               ? 1e-8
                               : config["mf_ada_epsilon"];
D
danleifeng 已提交
540 541 542 543 544 545 546 547 548 549

    float feature_learning_rate =
        (config.find("feature_learning_rate") == config.end())
            ? 0.05
            : config["feature_learning_rate"];

    float nodeid_slot = (config.find("nodeid_slot") == config.end())
                            ? 9008
                            : config["nodeid_slot"];

550 551 552 553 554 555
    this->SetSparseSGD(nonclk_coeff,
                       clk_coeff,
                       min_bound,
                       max_bound,
                       learning_rate,
                       initial_g2sum,
D
danleifeng 已提交
556 557 558 559
                       initial_range,
                       beta1_decay_rate,
                       beta2_decay_rate,
                       ada_epsilon);
560 561 562 563 564
    this->SetEmbedxSGD(mf_create_thresholds,
                       mf_learning_rate,
                       mf_initial_g2sum,
                       mf_initial_range,
                       mf_min_bound,
D
danleifeng 已提交
565 566 567
                       mf_max_bound,
                       mf_beta1_decay_rate,
                       mf_beta2_decay_rate,
D
danleifeng 已提交
568 569 570
                       mf_ada_epsilon,
                       nodeid_slot,
                       feature_learning_rate);
D
danleifeng 已提交
571 572 573 574

    // set optimizer type(naive,adagrad,std_adagrad,adam,share_adam)
    optimizer_type_ = (config.find("optimizer_type") == config.end())
                          ? 1
Z
zmxdream 已提交
575
                          : static_cast<int>(config["optimizer_type"]);
D
danleifeng 已提交
576 577 578 579

    VLOG(0) << "InitializeGPUServer optimizer_type_:" << optimizer_type_
            << " nodeid_slot:" << nodeid_slot
            << " feature_learning_rate:" << feature_learning_rate;
Y
yaoxuefeng 已提交
580
  }
F
Fan Zhang 已提交
581

582 583 584 585 586 587
  void SetDate(int year, int month, int day) {
    year_ = year;
    month_ = month;
    day_ = day;
  }

Y
yaoxuefeng 已提交
588 589
  void SetDataset(Dataset* dataset) { dataset_ = dataset; }

T
Thunderbrook 已提交
590 591
  // PSGPUWrapper singleton
  static std::shared_ptr<PSGPUWrapper> GetInstance() {
592 593 594 595 596
    {
      std::lock_guard<std::mutex> lk(ins_mutex);
      if (NULL == s_instance_) {
        s_instance_.reset(new paddle::framework::PSGPUWrapper());
      }
T
Thunderbrook 已提交
597 598 599 600 601 602 603 604 605
    }
    return s_instance_;
  }
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>& GetLocalTable(
      int table_id) {
    return local_tables_[table_id];
  }
  void SetSlotVector(const std::vector<int>& slot_vector) {
    slot_vector_ = slot_vector;
L
lxsbupt 已提交
606
    VLOG(0) << "slot_vector size is " << slot_vector_.size();
T
Thunderbrook 已提交
607 608
  }

Y
yaoxuefeng 已提交
609 610
  void SetSlotOffsetVector(const std::vector<int>& slot_offset_vector) {
    slot_offset_vector_ = slot_offset_vector;
Y
yaoxuefeng 已提交
611 612 613 614 615
    std::cout << "yxf set: ";
    for (auto s : slot_offset_vector_) {
      std::cout << s << " | ";
    }
    std::cout << " end " << std::endl;
Y
yaoxuefeng 已提交
616 617
  }

F
Fan Zhang 已提交
618
#ifdef PADDLE_WITH_CUDA
Y
yaoxuefeng 已提交
619 620 621
  void SetSlotDimVector(const std::vector<int>& slot_mf_dim_vector) {
    slot_mf_dim_vector_ = slot_mf_dim_vector;
    assert(slot_mf_dim_vector_.size() == slot_vector_.size());
Y
yaoxuefeng 已提交
622 623 624 625 626 627
  }

  void InitSlotInfo() {
    if (slot_info_initialized_) {
      return;
    }
Z
zmxdream 已提交
628
    SlotRecordDataset* dataset = reinterpret_cast<SlotRecordDataset*>(dataset_);
Y
yaoxuefeng 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    auto slots_vec = dataset->GetSlots();
    slot_offset_vector_.clear();
    for (auto& slot : slot_vector_) {
      for (size_t i = 0; i < slots_vec.size(); ++i) {
        if (std::to_string(slot) == slots_vec[i]) {
          slot_offset_vector_.push_back(i);
          break;
        }
      }
    }
    std::cout << "psgpu wrapper use slots: ";
    for (auto s : slot_offset_vector_) {
      std::cout << s << " | ";
    }
    std::cout << " end " << std::endl;
    for (size_t i = 0; i < slot_mf_dim_vector_.size(); i++) {
Y
yaoxuefeng 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
      slot_dim_map_[slot_vector_[i]] = slot_mf_dim_vector_[i];
    }

    std::unordered_set<int> dims_set;
    for (auto& it : slot_dim_map_) {
      dims_set.insert(it.second);
    }
    size_t num_of_dim = dims_set.size();
    index_dim_vec_.resize(num_of_dim);
    index_dim_vec_.assign(dims_set.begin(), dims_set.end());
    std::sort(index_dim_vec_.begin(), index_dim_vec_.end());
    std::unordered_map<int, int> dim_index_map;
    for (size_t i = 0; i < num_of_dim; i++) {
      dim_index_map[index_dim_vec_[i]] = i;
    }
660
    hbm_pools_.resize(resource_->total_device() * num_of_dim);
L
lxsbupt 已提交
661 662 663 664
    for (size_t i = 0; i < hbm_pools_.size(); i++) {
      hbm_pools_[i] = new HBMMemoryPoolFix();
    }

665
    mem_pools_.resize(resource_->total_device() * num_of_dim);
Y
yaoxuefeng 已提交
666 667 668 669 670 671 672
    max_mf_dim_ = index_dim_vec_.back();
    multi_mf_dim_ = (dim_index_map.size() >= 1) ? dim_index_map.size() : 0;
    resource_->set_multi_mf(multi_mf_dim_, max_mf_dim_);
    slot_index_vec_.resize(slot_mf_dim_vector_.size());
    for (size_t i = 0; i < slot_index_vec_.size(); i++) {
      slot_index_vec_[i] = dim_index_map[slot_mf_dim_vector_[i]];
    }
D
danleifeng 已提交
673 674

    auto accessor_wrapper_ptr =
D
danleifeng 已提交
675
        GlobalAccessorFactory::GetInstance().GetAccessorWrapper();
D
danleifeng 已提交
676 677
    val_type_size_ = accessor_wrapper_ptr->GetFeatureValueSize(max_mf_dim_);
    grad_type_size_ = accessor_wrapper_ptr->GetPushValueSize(max_mf_dim_);
D
danleifeng 已提交
678
    pull_type_size_ = accessor_wrapper_ptr->GetPullValueSize(max_mf_dim_);
D
danleifeng 已提交
679
    VLOG(0) << "InitSlotInfo: val_type_size_" << val_type_size_
D
danleifeng 已提交
680 681
            << " grad_type_size_:" << grad_type_size_
            << " pull_type_size_:" << pull_type_size_;
Y
yaoxuefeng 已提交
682
    slot_info_initialized_ = true;
Y
yaoxuefeng 已提交
683
  }
F
Fan Zhang 已提交
684
#endif
Y
yaoxuefeng 已提交
685

T
Thunderbrook 已提交
686 687
  void ShowOneTable(int index) { HeterPs_->show_one_table(index); }

T
Thunderbrook 已提交
688 689 690 691 692 693 694 695
  int UseAfsApi() { return use_afs_api_; }

#ifdef PADDLE_WITH_PSLIB
  std::shared_ptr<paddle::ps::AfsReader> OpenReader(
      const std::string& filename) {
    return afs_handler_.open_reader(filename);
  }

Z
zmxdream 已提交
696 697 698 699 700
  std::shared_ptr<paddle::ps::AfsWriter> OpenWriter(
      const std::string& filename) {
    return afs_handler_.open_writer(filename);
  }

701 702 703 704
  void InitAfsApi(const std::string& fs_name,
                  const std::string& fs_user,
                  const std::string& pass_wd,
                  const std::string& conf);
T
Thunderbrook 已提交
705 706
#endif

D
danleifeng 已提交
707 708 709 710 711 712
#ifdef PADDLE_WITH_PSCORE
  void SetTableAccessor(paddle::distributed::ValueAccessor* accessor) {
    cpu_table_accessor_ = accessor;
  }
#endif

T
Thunderbrook 已提交
713 714
 private:
  static std::shared_ptr<PSGPUWrapper> s_instance_;
715
  static std::mutex ins_mutex;
Y
yaoxuefeng 已提交
716
  Dataset* dataset_;
T
Thunderbrook 已提交
717 718 719
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::AfsApiWrapper afs_handler_;
#endif
T
Thunderbrook 已提交
720
  std::unordered_map<
721 722
      uint64_t,
      std::vector<std::unordered_map<uint64_t, std::vector<float>>>>
T
Thunderbrook 已提交
723
      local_tables_;
L
lxsbupt 已提交
724 725
  HeterPsBase* HeterPs_ = NULL;
  // std::vector<LoDTensor> keys_tensor;  // Cache for pull_sparse
726
  std::vector<phi::DenseTensor> keys_tensor;  // Cache for pull_sparse
T
Thunderbrook 已提交
727 728 729
  std::shared_ptr<HeterPsResource> resource_;
  int32_t sleep_seconds_before_fail_exit_;
  std::vector<int> slot_vector_;
Y
yaoxuefeng 已提交
730 731 732 733 734 735 736 737 738
  std::vector<int> slot_offset_vector_;
  std::vector<int> slot_mf_dim_vector_;
  std::unordered_map<int, int> slot_dim_map_;
  std::vector<int> slot_index_vec_;
  std::vector<int> index_dim_vec_;
  int multi_mf_dim_{0};
  int max_mf_dim_{0};
  size_t val_type_size_{0};
  size_t grad_type_size_{0};
D
danleifeng 已提交
739
  size_t pull_type_size_{0};
Y
yaoxuefeng 已提交
740 741 742 743 744 745

  double time_1 = 0.0;
  double time_2 = 0.0;
  double time_3 = 0.0;
  double time_4 = 0.0;

T
Thunderbrook 已提交
746
  int multi_node_{0};
L
lxsbupt 已提交
747
  int rank_id_;
748
  int node_size_;
749
  uint64_t table_id_;
D
danleifeng 已提交
750
  int gpu_graph_mode_ = 0;
F
Fan Zhang 已提交
751
#ifdef PADDLE_WITH_CUDA
752 753 754
  std::vector<ncclComm_t> inner_comms_;
  std::vector<ncclComm_t> inter_comms_;
  std::vector<ncclUniqueId> inter_ncclids_;
F
Fan Zhang 已提交
755
#endif
Y
yaoxuefeng 已提交
756 757 758
  std::vector<int> heter_devices_;
  std::unordered_set<std::string> gpu_ps_config_keys_;
  HeterObjectPool<HeterContext> gpu_task_pool_;
759
  std::vector<std::vector<robin_hood::unordered_set<uint64_t>>> thread_keys_;
760 761
  std::vector<std::vector<std::vector<robin_hood::unordered_set<uint64_t>>>>
      thread_dim_keys_;
Y
yaoxuefeng 已提交
762 763 764
  int thread_keys_thread_num_ = 37;
  int thread_keys_shard_num_ = 37;
  uint64_t max_fea_num_per_pass_ = 5000000000;
765 766 767
  int year_;
  int month_;
  int day_;
Y
yaoxuefeng 已提交
768
  bool slot_info_initialized_ = false;
L
lxsbupt 已提交
769
  bool hbm_sparse_table_initialized_ = false;
T
Thunderbrook 已提交
770
  int use_afs_api_ = 0;
D
danleifeng 已提交
771 772 773 774 775 776
  int optimizer_type_ = 1;
  std::string accessor_class_;
  std::unordered_map<std::string, float> fleet_config_;
#ifdef PADDLE_WITH_PSCORE
  paddle::distributed::ValueAccessor* cpu_table_accessor_;
#endif
T
Thunderbrook 已提交
777

F
Fan Zhang 已提交
778
#ifdef PADDLE_WITH_CUDA
Y
yaoxuefeng 已提交
779
  std::vector<MemoryPool*> mem_pools_;
L
lxsbupt 已提交
780 781
  std::vector<HBMMemoryPoolFix*> hbm_pools_;  // in multi mfdim, one table need
                                              // hbm pools of totol dims number
F
Fan Zhang 已提交
782
#endif
Y
yaoxuefeng 已提交
783

784 785 786 787 788 789 790 791 792 793 794 795
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      data_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      buildcpu_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      gpu_free_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
L
lxsbupt 已提交
796 797 798 799 800 801
  std::shared_ptr<
      paddle::framework::ChannelObject<std::shared_ptr<HeterContext>>>
      buildpull_ready_channel_ =
          paddle::framework::MakeChannel<std::shared_ptr<HeterContext>>();
  std::vector<std::shared_ptr<paddle::framework::ChannelObject<task_info>>>
      cpu_reday_channels_;
802
  std::shared_ptr<HeterContext> current_task_ = nullptr;
803
  std::thread pre_build_threads_;
L
lxsbupt 已提交
804
  std::thread buildpull_threads_;
805
  bool running_ = false;
Y
yaoxuefeng 已提交
806
  std::vector<std::shared_ptr<ThreadPool>> pull_thread_pool_;
T
Thunderbrook 已提交
807
  std::vector<std::shared_ptr<ThreadPool>> hbm_thread_pool_;
L
lxsbupt 已提交
808
  std::vector<std::shared_ptr<ThreadPool>> cpu_work_pool_;
D
danleifeng 已提交
809
  OptimizerConfig optimizer_config_;
L
lxsbupt 已提交
810 811 812 813
  // gradient push count
  uint64_t grad_push_count_ = 0;
  // infer mode
  bool infer_mode_ = false;
814

T
Thunderbrook 已提交
815 816 817 818 819 820 821
 protected:
  static bool is_initialized_;
};

}  // end namespace framework
}  // end namespace paddle
#endif