activation.py 56.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51 52 53 54 55 56 57 58 59 60

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
61
    if in_dygraph_mode():
62
        return _C_ops.celu(x, alpha)
63 64 65 66 67 68 69 70 71 72 73 74 75
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'celu'
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
76 77


78
def elu(x, alpha=1.0, name=None):
79
    r"""
80 81
    elu activation.

82
    .. math::
83

Z
zhupengyang 已提交
84 85 86 87 88 89 90
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
91 92 93 94

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
95
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
96

97 98
    Returns:
        A Tensor with the same data type and shape as ``x`` .
99

100 101 102
    Examples:
        .. code-block:: python

103 104
            import paddle
            import paddle.nn.functional as F
105

Z
zhupengyang 已提交
106
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
107
            out = F.elu(x, alpha=0.2)
108 109
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
110 111
    """

112
    if in_dygraph_mode():
113
        return _C_ops.elu(x, alpha)
114

115 116 117 118 119 120 121 122 123 124 125 126 127
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'elu'
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
128 129


130
@inplace_apis_in_dygraph_only
131 132 133 134 135
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
136
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
137
    if in_dygraph_mode():
138 139
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145
    gelu activation.

146 147
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

148
    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
162 163
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
164

165 166
    Returns:
        A Tensor with the same data type and shape as ``x`` .
167

168 169 170
    Examples:
        .. code-block:: python

171 172
            import paddle
            import paddle.nn.functional as F
173

Z
zhupengyang 已提交
174 175 176 177 178 179 180
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
181 182
    """

183
    if in_dygraph_mode():
184
        return _C_ops.gelu(x, approximate)
185 186 187 188 189 190 191 192 193 194 195 196 197
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'gelu'
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
198 199


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
217 218
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
219 220 221 222 223 224 225

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

226 227
            import paddle
            import paddle.nn.functional as F
228

Z
zhupengyang 已提交
229
            x = paddle.to_tensor([-1, 0.3, 2.5])
230
            out = F.hardshrink(x) # [-1., 0., 2.5]
231 232

    """
H
hong 已提交
233
    if in_dygraph_mode():
234
        return _C_ops.hardshrink(x, threshold)
235 236 237 238 239 240 241 242 243 244 245 246 247
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardshrink'
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
248 249


250
def hardtanh(x, min=-1.0, max=1.0, name=None):
251
    r"""
252
    hardtanh activation. Calculate the `hardtanh` of input `x`.
253 254 255

    .. math::

256 257 258 259 260 261 262 263
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
264

265
    Parameters:
266 267 268
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
269
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
270 271 272 273 274 275 276 277 278 279

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

280
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
281 282 283
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
284
    if in_dygraph_mode():
285
        return _C_ops.hardtanh(x, min, max)
286 287 288 289
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
290

291 292 293 294 295 296 297 298 299
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
300 301


302
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
303
    r"""
304
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
305 306 307 308 309 310
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
311 312 313 314 315 316 317
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
318 319 320

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
321 322
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
323
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
324 325 326 327 328 329 330 331 332 333 334 335 336 337

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
338
    if in_dygraph_mode():
339
        return _C_ops.hardsigmoid(x, slope, offset)
340 341 342 343
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardsigmoid'
        )
H
hong 已提交
344

345 346 347 348 349 350 351 352 353
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
354 355 356


def hardswish(x, name=None):
357
    r"""
358 359 360
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
361 362 363 364

    .. math::

        hardswish(x)=
365 366 367 368 369 370 371
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
372 373 374

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
375
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
376 377 378 379 380 381 382 383 384 385 386 387 388

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """
389
    if in_dygraph_mode():
390
        return _C_ops.hardswish(x)
391 392 393 394
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardswish'
        )
395

396 397 398 399 400 401
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_swish', inputs={'X': x}, outputs={'Out': out}
        )
        return out
402 403


404
def leaky_relu(x, negative_slope=0.01, name=None):
405
    r"""
406
    leaky_relu activation. The calculation formula is:
407

408
    .. math::
409 410 411 412 413 414 415
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
416 417 418 419 420

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
421
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
422 423 424 425 426 427 428 429 430 431

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
432
            x = paddle.to_tensor([-2., 0., 1.])
433 434 435
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
436 437

    """
438
    if in_dygraph_mode():
439
        return _C_ops.leaky_relu(x, negative_slope)
440 441 442 443 444 445 446 447 448 449 450 451 452
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'leaky_relu'
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
453 454


455
def prelu(x, weight, data_format="NCHW", name=None):
456 457 458 459 460 461 462 463 464 465 466
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
467
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
468 469
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
470 471 472 473 474 475 476 477 478 479

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

480
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
481 482 483 484
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
485 486 487 488 489
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
490 491 492 493 494 495 496 497
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
498 499 500
    check_variable_and_dtype(
        weight, 'weight', ['float16', 'float32', 'float64'], 'prelu'
    )
501

502 503 504
    assert (
        len(weight.shape) == 1
    ), "The dim count of weight shape should be 1 in prelu()."
505 506 507

    mode = 'all'
    if weight.shape[0] > 1:
508 509

        true_data_format = [
510 511 512 513 514 515 516
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
517 518 519 520
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
521 522
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
523 524 525

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

526 527 528
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
529

530
        # NOTE(GuoxiaWang): support NHWC data format
531
        if data_format == 'NHWC':
532 533 534
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
535
        else:
536 537 538
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
539 540
        mode = 'channel'

541
    if in_dygraph_mode():
542
        return _C_ops.prelu(x, weight, data_format, mode)
543 544 545 546 547 548 549 550
    else:
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
551
        )
552
        return out
553 554


555
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
598
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
617
            print(out)
618 619 620 621 622 623 624 625 626
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
627 628 629
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64'], 'rrelu'
        )
630 631 632

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
633 634 635 636
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
637 638 639

    if lower < 0 or lower > 1:
        raise ValueError(
640 641 642 643
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
644 645 646

    if upper < lower:
        raise ValueError(
647 648 649 650
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
651 652 653 654

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
655 656 657
                upper
            )
        )
658 659 660

    is_test = not training

661
    if in_dygraph_mode():
662 663 664
        out, noise = _legacy_C_ops.rrelu(
            x, 'lower', lower, 'upper', upper, 'is_test', is_test
        )
665
        return out
666 667 668 669 670 671 672 673 674 675 676 677
    else:
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
678 679


680
def relu(x, name=None):
681
    """
682
    relu activation.
683

684
    .. math::
685 686 687 688

        out = max(x, 0)

    Parameters:
689
        x (Tensor): The input Tensor with data type float32, float64.
690
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
691 692

    Returns:
693
        A Tensor with the same data type and shape as ``x`` .
694 695 696 697

    Examples:
        .. code-block:: python

698 699
            import paddle
            import paddle.nn.functional as F
700

701 702 703 704
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
705 706
    """

707
    if in_dygraph_mode():
W
wanghuancoder 已提交
708
        return _C_ops.relu(x)
709 710 711 712 713 714 715 716
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'relu'
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
717 718


719
@inplace_apis_in_dygraph_only
720 721 722 723 724
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
725
    return _C_ops.relu_(x)
726 727


728
def log_sigmoid(x, name=None):
729
    r"""
730
    log_sigmoid activation.
731

732
    .. math::
733

734
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
735

736 737
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
738
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
739

740 741
    Returns:
        A Tensor with the same data type and shape as ``x`` .
742

743 744 745
    Examples:
        .. code-block:: python

746 747
            import paddle
            import paddle.nn.functional as F
748

749 750
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
751 752
    """

H
hong 已提交
753
    if in_dygraph_mode():
754
        return _C_ops.logsigmoid(x)
755 756 757 758 759 760 761 762 763 764
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
765 766


767
def maxout(x, groups, axis=1, name=None):
768
    r"""
769 770 771 772 773 774 775 776
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

777 778 779 780 781 782 783 784 785
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

786 787 788 789

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
790
        groups (int): The groups number of maxout. `groups` specifies the
791
            index of channel dimension where maxout will be performed. This must be
792
            a factor of number of features.
793 794 795 796 797
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
798
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
821
    if in_dygraph_mode():
822
        return _C_ops.maxout(x, groups, axis)
823 824 825 826 827 828 829 830 831
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
832

833 834 835 836 837 838 839 840 841
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
842 843


844 845 846 847 848 849
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

850
        relu6(x) = min(max(0,x), 6)
851

852
    Parameters:
853
        x (Tensor): The input Tensor with data type float32, float64.
854
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
855 856 857 858 859 860 861

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

862 863
            import paddle
            import paddle.nn.functional as F
864

865 866 867 868
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
869 870
    """
    threshold = 6.0
871
    if in_dygraph_mode():
872
        return _C_ops.relu6(x)
Z
zhiboniu 已提交
873
    if in_dynamic_mode():
874
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
875 876 877 878

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
879 880 881 882 883 884
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
885 886 887
    return out


888 889 890 891 892 893
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
894
    r"""
895 896 897 898
    selu activation

    .. math::

899
        selu(x)= scale *
900 901 902 903 904 905
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
906

907
    Parameters:
908
        x (Tensor): The input Tensor with data type float32, float64.
909 910
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
911
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
912 913 914 915 916 917 918

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

919 920
            import paddle
            import paddle.nn.functional as F
921

922 923 924 925
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
926
    """
927 928
    if scale <= 1.0:
        raise ValueError(
929 930
            "The scale must be greater than 1.0. Received: {}.".format(scale)
        )
931 932 933

    if alpha < 0:
        raise ValueError(
934 935
            "The alpha must be no less than zero. Received: {}.".format(alpha)
        )
936

H
hong 已提交
937
    if in_dygraph_mode():
938
        return _C_ops.selu(x, scale, alpha)
939 940 941 942 943 944 945 946 947 948 949 950 951
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
952 953


M
minghaoBD 已提交
954
def silu(x, name=None):
955 956 957 958 959
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
960
        silu(x) = \frac{x}{1 + e^{-x}}
961

962 963
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
964 965
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
966
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
967

M
minghaoBD 已提交
968
    Returns:
969
        A Tensor with the same data type and shape as :attr:`x`.
970

M
minghaoBD 已提交
971 972
    Examples:
        .. code-block:: python
973 974 975

            import paddle
            import paddle.nn.functional as F
976

977 978
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
979 980
    """

981
    if in_dygraph_mode():
W
wanghuancoder 已提交
982
        return _C_ops.silu(x)
983 984 985 986 987 988 989 990
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'silu'
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
991 992


993
def softmax(x, axis=-1, dtype=None, name=None):
994
    r"""
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1020
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1069 1070
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1071
        axis (int, optional): The axis along which to perform softmax
1072
            calculations. It should be in range [-D, D), where D is the
1073
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1074
            :math:`axis + D` . Default is -1.
1075
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1076
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1077 1078

    Returns:
1079 1080
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1081 1082 1083 1084

    Examples:
        .. code-block:: python

1085 1086
            import paddle
            import paddle.nn.functional as F
1087

1088
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1089 1090 1091 1092
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1093
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1104
    """
1105 1106 1107

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
H
hong 已提交
1108
    if in_dygraph_mode():
1109
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1110
        return _C_ops.softmax(outs_cast, axis)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'softmax'
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
H
hong 已提交
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1136

1137 1138
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1139 1140
        )
        helper.append_op(
1141 1142 1143 1144
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1145
        )
1146

1147
        return outs_softmax
1148 1149


1150
@inplace_apis_in_dygraph_only
1151 1152 1153 1154 1155 1156 1157
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1158 1159 1160 1161 1162 1163
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1164 1165


1166
def softplus(x, beta=1, threshold=20, name=None):
1167
    r"""
1168 1169 1170
    softplus activation

    .. math::
1171 1172 1173 1174
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1175

1176
    Parameters:
1177
        x (Tensor): The input Tensor with data type float32, float64.
1178 1179
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1180
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1181 1182 1183 1184 1185 1186 1187

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1188 1189
            import paddle
            import paddle.nn.functional as F
1190

1191
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1192
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1193
    """
W
Wang Bojun 已提交
1194 1195

    if in_dygraph_mode():
1196
        return _C_ops.softplus(x, beta, threshold)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softplus'
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1210 1211 1212


def softshrink(x, threshold=0.5, name=None):
1213
    r"""
1214 1215 1216 1217
    softshrink activation

    .. math::

1218
        softshrink(x)=
1219 1220 1221 1222 1223 1224 1225
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1226

1227
    Parameters:
1228 1229
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1230
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1231 1232 1233 1234 1235 1236 1237

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1238 1239
            import paddle
            import paddle.nn.functional as F
1240

1241 1242 1243 1244 1245
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1246
    """
1247 1248 1249
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1250 1251 1252
                threshold
            )
        )
1253

1254
    if in_dygraph_mode():
1255
        return _C_ops.softshrink(x, threshold)
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softshrink'
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1269 1270 1271


def softsign(x, name=None):
1272
    r"""
1273 1274 1275 1276
    softsign activation

    .. math::

1277
        softsign(x) = \frac{x}{1 + |x|}
1278

1279
    Parameters:
1280
        x (Tensor): The input Tensor with data type float32, float64.
1281
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1282 1283 1284 1285 1286 1287 1288

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1289 1290
            import paddle
            import paddle.nn.functional as F
1291

1292 1293 1294 1295 1296
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1297
    """
1298
    if in_dygraph_mode():
W
wanghuancoder 已提交
1299
        return _C_ops.softsign(x)
1300 1301
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1302

1303 1304 1305
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softsign'
    )
1306 1307 1308 1309 1310 1311
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1312
def swish(x, name=None):
1313
    r"""
1314 1315 1316 1317
    swish activation.

    .. math::

1318
        swish(x) = \frac{x}{1 + e^{-x}}
1319 1320 1321

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1322
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1333 1334 1335 1336 1337
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1338
    """
1339
    if in_dygraph_mode():
1340
        return _C_ops.swish(x)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'swish'
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1354 1355


1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1368

1369 1370
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1371
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1382
            x = paddle.to_tensor([-5., 0., 5.])
1383 1384
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1385
    if in_dygraph_mode():
1386
        return _C_ops.mish(x, 20)
1387 1388 1389 1390 1391 1392 1393 1394
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'mish'
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1395 1396


1397 1398 1399 1400 1401 1402
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1403
        tanhshrink(x) = x - tanh(x)
1404 1405 1406

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1407
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1408 1409 1410 1411 1412 1413 1414

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1415 1416
            import paddle
            import paddle.nn.functional as F
1417

1418 1419 1420 1421 1422
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1423
    """
H
hong 已提交
1424
    if in_dygraph_mode():
1425
        return _C_ops.tanh_shrink(x)
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'tanhshrink'
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1436 1437


1438
def thresholded_relu(x, threshold=1.0, name=None):
1439
    r"""
1440 1441 1442 1443
    thresholded relu activation.

    .. math::

1444
        thresholded\_relu(x) =
1445 1446 1447 1448 1449 1450 1451
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1452 1453 1454 1455

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1456
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1467 1468 1469 1470 1471
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1472 1473
    """

H
hong 已提交
1474
    if in_dygraph_mode():
1475
        return _C_ops.thresholded_relu(x, threshold)
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu'
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1489 1490


1491
def log_softmax(x, axis=-1, dtype=None, name=None):
1492
    r"""
1493 1494
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1495 1496 1497

    .. math::

1498
        \begin{aligned}
1499 1500 1501
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1502 1503

    Parameters:
1504 1505 1506 1507 1508 1509 1510
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1511
            to ``dtype`` before the operation is performed. This is useful for
1512 1513 1514
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1515
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1516

1517
    Returns:
1518 1519
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1520 1521 1522 1523

    Examples:
        .. code-block:: python

1524 1525 1526
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1527 1528 1529 1530 1531 1532
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1545 1546 1547

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1548

H
hong 已提交
1549
    if in_dygraph_mode():
1550
        if dtype is not None:
1551 1552
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    else:
        if dtype is None:
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'log_softmax'
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1566

1567 1568
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1569
        if dtype is not None:
1570 1571 1572 1573 1574 1575 1576
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1577

1578
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1579
        helper.append_op(
1580 1581 1582 1583
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1584
        )
1585

1586
        return out
F
Feiyu Chan 已提交
1587 1588 1589 1590


def glu(x, axis=-1, name=None):
    r"""
1591
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1602 1603 1604
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1605
            Default is -1.
1606
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1607

F
Feiyu Chan 已提交
1608
    Returns:
1609
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1610
        halved.
1611

F
Feiyu Chan 已提交
1612 1613
    Examples:
        .. code-block:: python
1614

F
Feiyu Chan 已提交
1615 1616
            import paddle
            from paddle.nn import functional as F
1617

F
Feiyu Chan 已提交
1618 1619
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
1620
                    [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
F
Feiyu Chan 已提交
1621
            )
1622 1623 1624 1625
            print(F.glu(x))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.15216254, -0.90048921],
            #         [-1.05778778, -0.46985325]])
1626

F
Feiyu Chan 已提交
1627
    """
1628 1629 1630
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
F
Feiyu Chan 已提交
1631 1632 1633 1634
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1660 1661
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1662 1663 1664
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1665 1666
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1667
            in autograd. Default is False.
1668
        axis (int, optional): The axis along will be calculated softmax value.
1669
            Default is -1.
1670
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1671

1672
    Returns:
1673 1674
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1675
        probability distributions that sum to 1 across ``axis``.
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1692

1693
    """
H
hong 已提交
1694
    if in_dygraph_mode():
1695
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1696

Z
zhiboniu 已提交
1697
    if in_dynamic_mode():
1698 1699 1700
        return _legacy_C_ops.gumbel_softmax(
            x, 'temperature', temperature, 'hard', hard, 'axis', axis
        )
1701 1702 1703 1704

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1705 1706 1707 1708 1709 1710
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1711
    return out