test_meshgrid_op.py 6.5 KB
Newer Older
S
suytingwan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
import paddle.fluid as fluid
import paddle
from paddle.fluid import compiler, Program, program_guard, core


class TestMeshgridOp(OpTest):
    def setUp(self):
        self.op_type = "meshgrid"
        self.dtype = self.get_dtype()
        ins, outs = self.init_test_data()
        self.inputs = {'X': [('x%d' % i, ins[i]) for i in range(len(ins))]}
        self.outputs = {
            'Out': [('out%d' % i, outs[i]) for i in range(len(outs))]
        }

    def get_dtype(self):
        return "float64"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], ['out0'])
        self.check_grad(['x1'], ['out1'])

    def init_test_data(self):
        self.shape = self.get_x_shape()
        ins = []
        outs = []
        for i in range(len(self.shape)):
            ins.append(np.random.random((self.shape[i], )).astype(self.dtype))

        for i in range(len(self.shape)):
            out_reshape = [1] * len(self.shape)
            out_reshape[i] = self.shape[i]
            out_temp = np.reshape(ins[i], out_reshape)
            outs.append(np.broadcast_to(out_temp, self.shape))
        return ins, outs

    def get_x_shape(self):
        return [100, 200]


class TestMeshgridOp2(TestMeshgridOp):
    def get_x_shape(self):
        return [100, 300]


class TestMeshgridOp3(unittest.TestCase):
    def test_api(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

        input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
82
        grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
83 84 85 86 87 88 89 90 91
        res_1, res_2 = exe.run(fluid.default_main_program(),
                               feed={'x': input_1,
                                     'y': input_2},
                               fetch_list=[grid_x, grid_y])
        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp4(unittest.TestCase):
92 93 94
    def test_list_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')
S
suytingwan 已提交
95

96 97
        input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_2 = np.random.randint(0, 100, [200, ]).astype('int32')
S
suytingwan 已提交
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112
        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid([x, y])
        res_1, res_2 = exe.run(fluid.default_main_program(),
                               feed={'x': input_1,
                                     'y': input_2},
                               fetch_list=[grid_x, grid_y])

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)
S
suytingwan 已提交
113 114 115


class TestMeshgridOp5(unittest.TestCase):
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    def test_tuple_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

        input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid((x, y))
        res_1, res_2 = exe.run(fluid.default_main_program(),
                               feed={'x': input_1,
                                     'y': input_2},
                               fetch_list=[grid_x, grid_y])

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp6(unittest.TestCase):
S
suytingwan 已提交
140 141 142 143
    def test_api_with_dygraph(self):
        input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

144 145 146 147 148 149 150 151 152 153 154 155 156 157
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid(tensor_3, tensor_4)

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])


class TestMeshgridOp7(unittest.TestCase):
    def test_api_with_dygraph_list_input(self):
        input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

S
suytingwan 已提交
158 159 160 161 162 163 164 165 166
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid([tensor_3, tensor_4])

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])


Z
zhangchunle 已提交
167
class TestMeshgridOp8(unittest.TestCase):
168 169 170 171 172 173 174 175 176 177 178 179 180
    def test_api_with_dygraph_tuple_input(self):
        input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
        input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid((tensor_3, tensor_4))

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])


S
suytingwan 已提交
181
if __name__ == '__main__':
H
hong 已提交
182
    paddle.enable_static()
S
suytingwan 已提交
183
    unittest.main()