# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, skip_check_grad_ci import paddle.fluid as fluid import paddle from paddle.fluid import compiler, Program, program_guard, core class TestMeshgridOp(OpTest): def setUp(self): self.op_type = "meshgrid" self.dtype = self.get_dtype() ins, outs = self.init_test_data() self.inputs = {'X': [('x%d' % i, ins[i]) for i in range(len(ins))]} self.outputs = { 'Out': [('out%d' % i, outs[i]) for i in range(len(outs))] } def get_dtype(self): return "float64" def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['x0'], ['out0']) self.check_grad(['x1'], ['out1']) def init_test_data(self): self.shape = self.get_x_shape() ins = [] outs = [] for i in range(len(self.shape)): ins.append(np.random.random((self.shape[i], )).astype(self.dtype)) for i in range(len(self.shape)): out_reshape = [1] * len(self.shape) out_reshape[i] = self.shape[i] out_temp = np.reshape(ins[i], out_reshape) outs.append(np.broadcast_to(out_temp, self.shape)) return ins, outs def get_x_shape(self): return [100, 200] class TestMeshgridOp2(TestMeshgridOp): def get_x_shape(self): return [100, 300] class TestMeshgridOp3(unittest.TestCase): def test_api(self): x = fluid.data(shape=[100], dtype='int32', name='x') y = fluid.data(shape=[200], dtype='int32', name='y') input_1 = np.random.randint(0, 100, [100, ]).astype('int32') input_2 = np.random.randint(0, 100, [200, ]).astype('int32') out_1 = np.reshape(input_1, [100, 1]) out_1 = np.broadcast_to(out_1, [100, 200]) out_2 = np.reshape(input_2, [1, 200]) out_2 = np.broadcast_to(out_2, [100, 200]) exe = fluid.Executor(place=fluid.CPUPlace()) grid_x, grid_y = paddle.tensor.meshgrid(x, y) res_1, res_2 = exe.run(fluid.default_main_program(), feed={'x': input_1, 'y': input_2}, fetch_list=[grid_x, grid_y]) assert np.array_equal(res_1, out_1) assert np.array_equal(res_2, out_2) class TestMeshgridOp4(unittest.TestCase): def test_list_input(self): x = fluid.data(shape=[100], dtype='int32', name='x') y = fluid.data(shape=[200], dtype='int32', name='y') input_1 = np.random.randint(0, 100, [100, ]).astype('int32') input_2 = np.random.randint(0, 100, [200, ]).astype('int32') out_1 = np.reshape(input_1, [100, 1]) out_1 = np.broadcast_to(out_1, [100, 200]) out_2 = np.reshape(input_2, [1, 200]) out_2 = np.broadcast_to(out_2, [100, 200]) exe = fluid.Executor(place=fluid.CPUPlace()) grid_x, grid_y = paddle.tensor.meshgrid([x, y]) res_1, res_2 = exe.run(fluid.default_main_program(), feed={'x': input_1, 'y': input_2}, fetch_list=[grid_x, grid_y]) assert np.array_equal(res_1, out_1) assert np.array_equal(res_2, out_2) class TestMeshgridOp5(unittest.TestCase): def test_tuple_input(self): x = fluid.data(shape=[100], dtype='int32', name='x') y = fluid.data(shape=[200], dtype='int32', name='y') input_1 = np.random.randint(0, 100, [100, ]).astype('int32') input_2 = np.random.randint(0, 100, [200, ]).astype('int32') out_1 = np.reshape(input_1, [100, 1]) out_1 = np.broadcast_to(out_1, [100, 200]) out_2 = np.reshape(input_2, [1, 200]) out_2 = np.broadcast_to(out_2, [100, 200]) exe = fluid.Executor(place=fluid.CPUPlace()) grid_x, grid_y = paddle.tensor.meshgrid((x, y)) res_1, res_2 = exe.run(fluid.default_main_program(), feed={'x': input_1, 'y': input_2}, fetch_list=[grid_x, grid_y]) assert np.array_equal(res_1, out_1) assert np.array_equal(res_2, out_2) class TestMeshgridOp6(unittest.TestCase): def test_api_with_dygraph(self): input_3 = np.random.randint(0, 100, [100, ]).astype('int32') input_4 = np.random.randint(0, 100, [200, ]).astype('int32') with fluid.dygraph.guard(): tensor_3 = fluid.dygraph.to_variable(input_3) tensor_4 = fluid.dygraph.to_variable(input_4) res_3, res_4 = paddle.tensor.meshgrid(tensor_3, tensor_4) assert np.array_equal(res_3.shape, [100, 200]) assert np.array_equal(res_4.shape, [100, 200]) class TestMeshgridOp7(unittest.TestCase): def test_api_with_dygraph_list_input(self): input_3 = np.random.randint(0, 100, [100, ]).astype('int32') input_4 = np.random.randint(0, 100, [200, ]).astype('int32') with fluid.dygraph.guard(): tensor_3 = fluid.dygraph.to_variable(input_3) tensor_4 = fluid.dygraph.to_variable(input_4) res_3, res_4 = paddle.tensor.meshgrid([tensor_3, tensor_4]) assert np.array_equal(res_3.shape, [100, 200]) assert np.array_equal(res_4.shape, [100, 200]) class TestMeshgridOp8(unittest.TestCase): def test_api_with_dygraph_tuple_input(self): input_3 = np.random.randint(0, 100, [100, ]).astype('int32') input_4 = np.random.randint(0, 100, [200, ]).astype('int32') with fluid.dygraph.guard(): tensor_3 = fluid.dygraph.to_variable(input_3) tensor_4 = fluid.dygraph.to_variable(input_4) res_3, res_4 = paddle.tensor.meshgrid((tensor_3, tensor_4)) assert np.array_equal(res_3.shape, [100, 200]) assert np.array_equal(res_4.shape, [100, 200]) if __name__ == '__main__': paddle.enable_static() unittest.main()