conv_op.h 43.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
liym27 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20
#include <vector>
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
L
lvmengsi 已提交
23
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
33 34
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
35
constexpr int MaxKeyLength = 256;
36

武毅 已提交
37 38
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
39 40
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
41
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
42
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
L
liym27 已提交
43 44
  PADDLE_ENFORCE_GT(
      output_size, 0,
C
chengduoZH 已提交
45 46 47 48 49
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
50 51
  return output_size;
}
L
liym27 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding_1, int padding_2, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + padding_1 + padding_2 - dkernel) / stride + 1;
  PADDLE_ENFORCE_GT(output_size, 0,
                    "Due to the settings of padding(%d, %d), filter_size(%d), "
                    "dilation(%d) and "
                    "stride(%d), the output size is less than 0, please check "
                    "again. Input_size:%d",
                    padding_1, padding_2, filter_size, dilation, stride,
                    input_size);

  return output_size;
}
inline void UpdatePaddingAndDilation(std::vector<int>* paddings,
                                     std::vector<int>* dilation,
                                     const std::string padding_algorithm,
                                     const framework::DDim data_dims,
                                     const std::vector<int>& strides,
                                     const std::vector<int>& ksize) {
  // set padding size == data_dims.size() * 2
  auto data_shape = framework::vectorize<int>(data_dims);
  if (paddings->size() == data_dims.size()) {
    for (size_t i = 0; i < data_dims.size(); ++i) {
      int copy_pad = *(paddings->begin() + 2 * i);
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(
        data_dims.size() * 2, paddings->size(),
        "Paddings size should be the same or twice as the input data size.");
  }

86
  // when padding_algorithm is "VALID" or "SAME"
L
liym27 已提交
87 88
  if (padding_algorithm == "SAME") {
    for (size_t i = 0; i < data_dims.size(); ++i) {
89
      int out_size = (data_dims[i] + strides[i] - 1) / strides[i];
L
liym27 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
      int pad_sum =
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i], 0);
      int pad_0 = pad_sum / 2;
      int pad_1 = pad_sum - pad_0;
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;

      // dilation
      *(dilation->begin() + i) = 1;
    }

  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

108 109 110 111
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
112 113
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
114
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
115 116 117
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
118
  }
L
liym27 已提交
119 120 121 122 123
  if (paddings.size() != strides.size()) {
    for (size_t j = 0; j < paddings.size(); ++j) {
      padding_0 = padding_0 && (paddings[j] == 0);
    }
  }
C
chengduoZH 已提交
124
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
125
}
武毅 已提交
126

L
liym27 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
template <typename DeviceContext, typename T>
inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
                                 const Tensor* input,
                                 Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[4];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    in_dims_vec[4] = input->dims()[3];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());

  } else if (dim == 2) {
    // input
    transformed_input->Resize(input->dims());

    auto in_dims_vec = framework::vectorize(input->dims());
    in_dims_vec[1] = input->dims()[3];
    in_dims_vec[2] = input->dims()[1];
    in_dims_vec[3] = input->dims()[2];
    transformed_input->Resize(framework::make_ddim(in_dims_vec));
    transformed_input->mutable_data<T>(context.GetPlace());
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelFirst(const framework::ExecutionContext& context,
                                const Tensor* input,
                                Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 4, 1, 2, 3};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 3, 1, 2};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  }
}

template <typename DeviceContext, typename T>
inline void TransToChannelLast(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* transformed_input) {
  int dim = input->dims().size() - 2;
  if (dim == 3) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 4, 1};
    math::Transpose<DeviceContext, T, 5> trans5;
    trans5(dev_ctx, *input, transformed_input, axis);

  } else if (dim == 2) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    std::vector<int> axis{0, 2, 3, 1};
    math::Transpose<DeviceContext, T, 4> trans4;
    trans4(dev_ctx, *input, transformed_input, axis);
  }
}
武毅 已提交
193 194 195 196
// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
197 198 199 200
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
201 202
};

C
chengduoZH 已提交
203 204
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
218 219 220
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
221 222 223
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
224 225 226 227

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
228 229
};

C
chengduoZH 已提交
230
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
231 232 233
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
234

Q
qingqing01 已提交
235 236 237 238 239 240 241 242 243 244
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

class ConvOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

245 246 247
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
248 249
};

Q
QI JUN 已提交
250
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
251
class GemmConvKernel : public framework::OpKernel<T> {
252 253 254
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
255 256 257 258
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
259 260 261
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
262 263
    const int groups = context.Attr<int>("groups");
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
264
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
265
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto trans_in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(trans_in_dims, 2, trans_in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);
299

300 301
    auto& dev_ctx = context.template device_context<DeviceContext>();

L
liym27 已提交
302
    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
C
chengduoZH 已提交
303

L
liym27 已提交
304 305
    // filter_shape_vec:
    // {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
306
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
L
liym27 已提交
307 308 309 310 311

    // output_shape_vec:
    // {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_output.dims()));
312

H
hedaoyuan 已提交
313
    // use col_shape in the im2col calculation
L
liym27 已提交
314 315 316
    // col_shape_vec:
    // {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w,
    // o_d,o_h, o_w}
C
chengduoZH 已提交
317
    size_t data_dim = filter_shape_vec.size() - 2;
L
liym27 已提交
318

C
chengduoZH 已提交
319
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
320
    col_shape_vec[0] = trans_in_dims[1] / groups;
C
chengduoZH 已提交
321 322 323 324
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
L
liym27 已提交
325

C
chengduoZH 已提交
326 327
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
328
    // use col_matrix_shape in the gemm calculation
L
liym27 已提交
329 330 331 332
    // size:
    // (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * o_h *
    // o_w)

C
chengduoZH 已提交
333
    framework::DDim col_matrix_shape =
L
liym27 已提交
334
        framework::flatten_to_2d(col_shape, data_dim);
C
chengduoZH 已提交
335

C
chengduoZH 已提交
336
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
337

H
hedaoyuan 已提交
338
    Tensor col;
H
hedaoyuan 已提交
339 340 341
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
342
    Tensor col_matrix;
C
chengduoZH 已提交
343
    if (is_expand) {
X
Xin Pan 已提交
344
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
345 346 347
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
348

L
liym27 已提交
349 350
    framework::DDim in_matrix_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
351

H
hedaoyuan 已提交
352 353
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
354 355
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
356
    framework::DDim output_matrix_shape = {
L
liym27 已提交
357 358 359
        transformed_output.dims()[1],
        transformed_output.numel() /
            (transformed_output.dims()[0] * transformed_output.dims()[1])};
C
chengduoZH 已提交
360 361

    // convolution operator: im2col(or vol2col) + gemm
L
liym27 已提交
362 363
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output.dims()[1]) / groups;
C
chengduoZH 已提交
364

Q
QI JUN 已提交
365 366
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
367

Y
Yu Yang 已提交
368
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
369
    for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
370 371 372 373
      Tensor in_batch =
          transformed_input.Slice(i, i + 1).Resize(in_matrix_shape);
      Tensor out_batch =
          transformed_output.Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
374

C
chengduoZH 已提交
375 376
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
377

C
chengduoZH 已提交
378
        if (!is_expand) {
C
chengduoZH 已提交
379 380 381
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
382
        } else if (data_dim == 2U) {
Q
QI JUN 已提交
383
          im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
384 385
                 std::vector<int>{paddings[0], paddings[2], paddings[1],
                                  paddings[3]},
C
chengduoZH 已提交
386
                 &col);
L
liym27 已提交
387

C
chengduoZH 已提交
388
        } else if (data_dim == 3U) {
Q
QI JUN 已提交
389
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
390
        }
C
chengduoZH 已提交
391 392 393 394

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
395 396
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
397
      }
398
    }
L
liym27 已提交
399 400 401 402
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
    }
403 404 405
  }
};

Q
QI JUN 已提交
406
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
407
class GemmConvGradKernel : public framework::OpKernel<T> {
408 409
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
410 411 412 413 414
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
415
    Tensor* filter_grad =
H
hedaoyuan 已提交
416
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
417 418 419 420
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
421

C
chengduoZH 已提交
422 423
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
424
    int groups = context.Attr<int>("groups");
L
liym27 已提交
425
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
H
hedaoyuan 已提交
426
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
427
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
L
liym27 已提交
428 429 430 431 432 433 434 435
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
H
hedaoyuan 已提交
436

L
liym27 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);
    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_input.dims()[0]);
H
hedaoyuan 已提交
463

464 465
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
466
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
467
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
468
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
469
    std::vector<int64_t> output_shape_vec(
L
liym27 已提交
470
        framework::vectorize(transformed_output_grad.dims()));
C
chengduoZH 已提交
471

C
chengduoZH 已提交
472 473 474
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
475 476
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
L
liym27 已提交
477
    col_shape_vec[0] = transformed_input.dims()[1] / groups;
C
chengduoZH 已提交
478 479 480 481
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
482
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
483 484

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
485 486 487 488
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
489
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
490

L
liym27 已提交
491 492
    framework::DDim input_shape = framework::slice_ddim(
        transformed_input.dims(), 1, transformed_input.dims().size());
C
chengduoZH 已提交
493

C
chengduoZH 已提交
494 495
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
496 497 498
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
L
liym27 已提交
499 500 501
        transformed_output_grad.dims()[1],
        transformed_output_grad.numel() / (transformed_output_grad.dims()[0] *
                                           transformed_output_grad.dims()[1])};
C
chengduoZH 已提交
502

C
chengduoZH 已提交
503 504
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
L
liym27 已提交
505 506
    int in_step = static_cast<int>(transformed_input.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_output_grad.dims()[1]) / groups;
C
chengduoZH 已提交
507

C
chengduoZH 已提交
508
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liym27 已提交
509

C
chengduoZH 已提交
510 511 512 513
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
514
    Tensor col_matrix;
C
chengduoZH 已提交
515
    if (is_expand) {
X
Xin Pan 已提交
516
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
517 518 519
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
520

Q
QI JUN 已提交
521
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
522
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
523 524 525

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
526 527 528 529
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);
C
chengduoZH 已提交
530

L
liym27 已提交
531 532 533
      } else {
        transformed_input_grad = *input_grad;
      }
C
chengduoZH 已提交
534 535 536
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
L
liym27 已提交
537
        set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
C
chengduoZH 已提交
538
      }
Q
QI JUN 已提交
539 540
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
541

C
chengduoZH 已提交
542 543
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
544 545 546
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            transformed_input_grad.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
547 548 549 550 551 552 553 554 555 556
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
557 558
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
559
          }
C
chengduoZH 已提交
560 561
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
562

C
chengduoZH 已提交
563
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
564
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
565 566
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
567
                   &in_grad_slice);
C
chengduoZH 已提交
568
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
569
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
570
          }
C
chengduoZH 已提交
571 572
        }
      }
L
liym27 已提交
573 574 575 576
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
      }
C
chengduoZH 已提交
577 578 579 580 581 582
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
583 584 585
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
586 587
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
L
liym27 已提交
588 589
            transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = transformed_input.Slice(i, i + 1).Resize(input_shape);
C
chengduoZH 已提交
590 591 592 593 594
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
595

C
chengduoZH 已提交
596
          if (!is_expand) {
C
chengduoZH 已提交
597 598 599
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
600
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
601
            im2col(dev_ctx, in_slice, dilations, strides,
L
liym27 已提交
602 603
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
C
chengduoZH 已提交
604
                   &col);
L
liym27 已提交
605

C
chengduoZH 已提交
606
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
607
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
608
          }
C
chengduoZH 已提交
609 610 611 612

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
613 614
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
615 616 617 618 619
        }
      }
    }
  }
};
Z
zlx 已提交
620

L
lvmengsi 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
template <typename DeviceContext, typename T>
class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      "It must use CPUPlace.");
    const Tensor* X = ctx.Input<Tensor>("Input");
    const Tensor* dY = ctx.Input<Tensor>("DOutput");
    const Tensor* ddX = ctx.Input<Tensor>("DDInput");
    const Tensor* ddW_in = ctx.Input<Tensor>("DDFilter");

    Tensor* ddY = ctx.Output<Tensor>("DDOutput");
    Tensor* dW = ctx.Output<Tensor>("DFilter");
    Tensor* dX = ctx.Output<Tensor>("DInput");
    Tensor W = detail::Ref(ctx.Input<Tensor>("Filter"),
                           "Cannot find input Filter(%s) in scope)",
                           ctx.Inputs("Filter")[0]);
    if (!ddY && !dW && !dX) return;
L
liym27 已提交
640 641 642

    const int groups = ctx.Attr<int>("groups");
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
L
lvmengsi 已提交
643 644
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
L
liym27 已提交
645 646 647 648 649 650 651 652 653
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_X(X->type());
    Tensor transformed_dY(dY->type());
L
lvmengsi 已提交
654
    Tensor transformed_ddX(X->type());
L
liym27 已提交
655 656 657 658 659 660 661 662

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);
      TransToChannelFirst<DeviceContext, T>(ctx, X, &transformed_X);

      ResizeToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);
      TransToChannelFirst<DeviceContext, T>(ctx, dY, &transformed_dY);

L
lvmengsi 已提交
663 664 665 666
      if (ddX) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
        TransToChannelFirst<DeviceContext, T>(ctx, ddX, &transformed_ddX);
      }
L
liym27 已提交
667 668 669
    } else {
      transformed_X = *X;
      transformed_dY = *dY;
L
lvmengsi 已提交
670 671 672
      if (ddX) {
        transformed_ddX = *ddX;
      }
L
liym27 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    }

    // update padding and dilation
    auto in_dims = transformed_X.dims();
    auto filter_dims = W.dims();

    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    const int batch_size = static_cast<int>(transformed_X.dims()[0]);
L
lvmengsi 已提交
688
    std::vector<int64_t> filter_shape_vec(framework::vectorize(W.dims()));
L
liym27 已提交
689 690
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(transformed_dY.dims()));
L
lvmengsi 已提交
691 692 693 694

    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    // col_shape [in_channel/group, kh, kw, oh, ow]
L
liym27 已提交
695
    col_shape_vec[0] = transformed_X.dims()[1] / groups;
L
lvmengsi 已提交
696 697 698 699 700 701 702 703 704
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + data_dim + 1] = output_shape_vec[j + 2];
    }
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
    // col_matrix_shape [in_channel/group * kh * kw, oh * ow]
    framework::DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, data_dim + 1);
    // input_shape [Cin, H, W]
L
liym27 已提交
705 706
    framework::DDim input_shape = framework::slice_ddim(
        transformed_X.dims(), 1, transformed_X.dims().size());
L
lvmengsi 已提交
707 708 709 710 711 712
    // filter_matrix_shape [Cout, Cin * kh * kw]
    framework::DDim filter_matrix_shape = {W.dims()[0],
                                           W.numel() / W.dims()[0]};

    W.Resize(filter_matrix_shape);
    framework::DDim output_matrix_shape = {
L
liym27 已提交
713 714 715 716 717
        transformed_dY.dims()[1],
        transformed_dY.numel() /
            (transformed_dY.dims()[0] * transformed_dY.dims()[1])};
    int in_step = static_cast<int>(transformed_X.dims()[1]) / groups;
    int out_step = static_cast<int>(transformed_dY.dims()[1]) / groups;
L
lvmengsi 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
    Tensor col;
    Tensor col_matrix;
    if (is_expand) {
      col = ctx.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }

    math::SetConstant<DeviceContext, T> set_zero;
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

    // dx convolution double grad:  gemm + col2im(col2vol)
    // dx = ddw * dy  ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout,
    // oH, oW)
    if (dX && ddW_in) {
      Tensor ddW;
      ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
      dX->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
738 739 740 741 742 743 744 745 746

      Tensor transformed_dX(dX->type());

      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, dX, &transformed_dX);

      } else {
        transformed_dX = *dX;
      }
L
lvmengsi 已提交
747 748 749
      // if is_expand is false, the operation of set_zero is unnecessary
      // because math::matmul will reset dx
      if (is_expand) {
L
liym27 已提交
750
        set_zero(dev_ctx, &transformed_dX, static_cast<T>(0));
L
lvmengsi 已提交
751 752 753 754 755
      }
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;

      for (int i = 0; i < batch_size; i++) {
L
liym27 已提交
756 757 758
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor dx_batch = transformed_dX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
          Tensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col_matrix.ShareDataWith(dx_slice);
            col_matrix.Resize(col_matrix_shape);
          }
          blas.MatMul(ddw_slice, true, dy_slice, false, T(1.0), &col_matrix,
                      T(0.0));

          if (is_expand && data_dim == 2U) {
            col2im(dev_ctx, col, dilations, strides,
L
liym27 已提交
773 774
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
775 776 777 778 779 780
                   &dx_slice);
          } else if (is_expand && data_dim == 3U) {
            col2vol(dev_ctx, col, dilations, strides, paddings, &dx_slice);
          }
        }
      }
L
liym27 已提交
781 782 783
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_dX, dX);
      }
L
lvmengsi 已提交
784 785 786 787 788
    }

    // dw = ddx * dy  ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
    // oH, oW)
    // dw convolution double grad:  im2col(vol2col) + gemm
L
lvmengsi 已提交
789
    if (dW && ddX) {
L
lvmengsi 已提交
790 791 792 793 794 795 796
      dW->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, dW, static_cast<T>(0));
      Tensor dW_arr = *dW;
      dW_arr.Resize(filter_matrix_shape);
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
797 798 799
        Tensor dy_batch =
            transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
800 801 802 803 804 805 806 807 808 809
        for (int g = 0; g < groups; ++g) {
          // im2col
          Tensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col.ShareDataWith(ddx_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
          } else if (data_dim == 2U) {
            im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
810 811
                   std::vector<int>{paddings[0], paddings[2], paddings[1],
                                    paddings[3]},
L
lvmengsi 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
                   &col);
          } else if (data_dim == 3U) {
            vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
          }

          Tensor dw_slice = dW_arr.Slice(g * out_step, (g + 1) * out_step);
          blas.MatMul(dy_slice, false, col_matrix, true, T(1.0), &dw_slice,
                      T(1.0));
        }
      }
    }

    // ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W),
    // w/ddw(Cout, Cin, kh, kw)
    // ddy convolution double grad: im2col(vol2col) + gemm
    if (ddY) {
      ddY->mutable_data<T>(ctx.GetPlace());
L
liym27 已提交
829 830 831 832 833 834 835 836 837

      Tensor transformed_ddY(ddY->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(ctx, ddY, &transformed_ddY);
      } else {
        transformed_ddY = *ddY;
      }

      set_zero(dev_ctx, &transformed_ddY, static_cast<T>(0));
L
lvmengsi 已提交
838 839 840
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
      for (int i = 0; i < batch_size; ++i) {
L
liym27 已提交
841 842
        Tensor ddy_batch =
            transformed_ddY.Slice(i, i + 1).Resize(output_matrix_shape);
L
lvmengsi 已提交
843
        for (int g = 0; g < groups; ++g) {
L
liym27 已提交
844
          // gemm
L
lvmengsi 已提交
845
          Tensor ddy_slice = ddy_batch.Slice(g * out_step, (g + 1) * out_step);
L
liym27 已提交
846

L
lvmengsi 已提交
847
          if (ddX) {
L
liym27 已提交
848 849
            Tensor ddx_batch =
                transformed_ddX.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
850 851 852 853 854 855 856
            Tensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
            if (!is_expand) {
              col.ShareDataWith(ddx_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, ddx_slice, dilations, strides,
L
liym27 已提交
857 858
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
859 860 861 862
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
            }
L
lvmengsi 已提交
863 864 865
            Tensor w_slice = W.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(w_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(0.0));
L
lvmengsi 已提交
866
          }
L
lvmengsi 已提交
867 868

          if (ddW_in) {
L
liym27 已提交
869
            Tensor x_batch = transformed_X.Slice(i, i + 1).Resize(input_shape);
L
lvmengsi 已提交
870
            Tensor x_slice = x_batch.Slice(g * in_step, (g + 1) * in_step);
L
lvmengsi 已提交
871

L
liym27 已提交
872 873
            Tensor ddW;
            ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
L
lvmengsi 已提交
874 875 876 877 878 879
            if (!is_expand) {
              col.ShareDataWith(x_slice);
              col_matrix.ShareDataWith(col);
              col_matrix.Resize(col_matrix_shape);
            } else if (data_dim == 2U) {
              im2col(dev_ctx, x_slice, dilations, strides,
L
liym27 已提交
880 881
                     std::vector<int>{paddings[0], paddings[2], paddings[1],
                                      paddings[3]},
L
lvmengsi 已提交
882 883 884 885 886 887 888 889 890 891 892 893
                     &col);
            } else if (data_dim == 3U) {
              vol2col(dev_ctx, x_slice, dilations, strides, paddings, &col);
            }

            // gemm
            Tensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
            blas.MatMul(ddw_slice, false, col_matrix, false, T(1.0), &ddy_slice,
                        T(1.0));
          }
        }
      }
L
liym27 已提交
894 895 896
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(ctx, &transformed_ddY, ddY);
      }
L
lvmengsi 已提交
897 898 899 900
    }
  }
};

Z
zlx 已提交
901 902 903 904 905 906 907 908 909
template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

L
liym27 已提交
910
    const std::vector<int> strides = context.Attr<std::vector<int>>("strides");
Z
zlx 已提交
911 912
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
913
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966

    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
    if (channel_last) {
      PADDLE_ENFORCE_EQ(
          output->dims()[output->dims().size() - 1] %
              input->dims()[input->dims().size() - 1],
          0, "The output channels must be a multiple of the input channels");
    } else {
      PADDLE_ENFORCE_EQ(
          output->dims()[1] % input->dims()[1], 0,
          "The output channels must be a multiple of the input channels");
    }
    // transform tensor
    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());

    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output,
                                             &transformed_output);

    } else {
      transformed_input = *input;
      transformed_output = *output;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }

Z
zlx 已提交
967
    auto& dev_ctx = context.template device_context<DeviceContext>();
968 969 970

    if (fuse_relu) {
      math::DepthwiseConvFunctor<DeviceContext, T, true> depthwiseConv;
L
liym27 已提交
971 972
      depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings,
                    dilations, &transformed_output);
973 974
    } else {
      math::DepthwiseConvFunctor<DeviceContext, T, false> depthwiseConv;
L
liym27 已提交
975 976 977 978 979 980
      depthwiseConv(dev_ctx, transformed_input, filter, strides, paddings,
                    dilations, &transformed_output);
    }
    if (channel_last) {
      TransToChannelLast<DeviceContext, T>(context, &transformed_output,
                                           output);
981
    }
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
1003
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
L
liym27 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");
    const std::string data_format = context.Attr<std::string>("data_format");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensor
    Tensor transformed_input(input->type());
    Tensor transformed_output_grad(output_grad->type());
1013

L
liym27 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    if (channel_last) {
      ResizeToChannelFirst<DeviceContext, T>(context, input,
                                             &transformed_input);
      TransToChannelFirst<DeviceContext, T>(context, input, &transformed_input);

      ResizeToChannelFirst<DeviceContext, T>(context, output_grad,
                                             &transformed_output_grad);
      TransToChannelFirst<DeviceContext, T>(context, output_grad,
                                            &transformed_output_grad);

    } else {
      transformed_input = *input;
      transformed_output_grad = *output_grad;
    }

    // update padding and dilation
    auto in_dims = transformed_input.dims();
    auto filter_dims = filter.dims();

    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    bool is_sys_pad = strides.size() * 2 == paddings.size() ? false : true;
    if (!is_sys_pad) {
      for (size_t i = 0; i < strides.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
      }
    }
1047 1048 1049 1050 1051
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
L
liym27 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
      Tensor transformed_input_grad(input_grad->type());
      if (channel_last) {
        ResizeToChannelFirst<DeviceContext, T>(context, input_grad,
                                               &transformed_input_grad);

      } else {
        transformed_input_grad = *input_grad;
      }

      set_zero(dev_ctx, &transformed_input_grad, static_cast<T>(0));
1062 1063 1064 1065

      if (fuse_relu) {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, true>
            depthwiseConvInputGrad;
L
liym27 已提交
1066 1067 1068
        depthwiseConvInputGrad(dev_ctx, transformed_input, filter,
                               transformed_output_grad, strides, paddings,
                               dilations, &transformed_input_grad);
1069 1070 1071
      } else {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, false>
            depthwiseConvInputGrad;
L
liym27 已提交
1072 1073 1074 1075 1076 1077 1078
        depthwiseConvInputGrad(dev_ctx, transformed_input, filter,
                               transformed_output_grad, strides, paddings,
                               dilations, &transformed_input_grad);
      }
      if (channel_last) {
        TransToChannelLast<DeviceContext, T>(context, &transformed_input_grad,
                                             input_grad);
1079
      }
1080 1081 1082 1083 1084
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
1085 1086 1087
      if (fuse_relu) {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, true>
            depthwiseConvFilterGrad;
L
liym27 已提交
1088 1089 1090
        depthwiseConvFilterGrad(dev_ctx, transformed_input,
                                transformed_output_grad, strides, paddings,
                                dilations, filter_grad);
1091 1092 1093
      } else {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, false>
            depthwiseConvFilterGrad;
L
liym27 已提交
1094 1095 1096
        depthwiseConvFilterGrad(dev_ctx, transformed_input,
                                transformed_output_grad, strides, paddings,
                                dilations, filter_grad);
1097
      }
1098
    }
Z
zlx 已提交
1099 1100 1101
  }
};

1102 1103
}  // namespace operators
}  // namespace paddle