conv_op.h 18.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
19
#include <vector>
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
23 24 25
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
X
Xin Pan 已提交
31 32
constexpr int kConvMKLDNNFP32 = 1;
constexpr int kConvMKLDNNINT8 = 2;
33
constexpr int MaxKeyLength = 256;
34

武毅 已提交
35 36
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
Y
Yang Yang 已提交
37 38
inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
C
chengduoZH 已提交
39
  const int dkernel = dilation * (filter_size - 1) + 1;
C
chengduoZH 已提交
40 41 42 43 44 45 46 47
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  PADDLE_ENFORCE(
      output_size > 0,
      "Due to the settings of padding(%d), filter_size(%d), dilation(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding, filter_size, dilation, stride, input_size);

武毅 已提交
48 49
  return output_size;
}
50 51 52 53
inline bool IsExpand(const std::vector<int64_t>& filter_dim,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations) {
C
chengduoZH 已提交
54 55
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
56
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
57 58 59
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
60
  }
C
chengduoZH 已提交
61
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
62
}
武毅 已提交
63 64 65 66 67

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
68 69 70 71
  void Make() final;

 protected:
  virtual void Apply() {}
武毅 已提交
72 73
};

C
chengduoZH 已提交
74 75
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
qingqing01 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88
  void Make() final;

 protected:
  virtual void Apply() {}
};

class ConvOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{
        {"Input", /*->*/ "Output"}};
  }
C
chengduoZH 已提交
89 90 91
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
92 93 94
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
95 96 97 98

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
99 100
};

C
chengduoZH 已提交
101
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
102 103 104
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
105

Q
qingqing01 已提交
106 107 108 109 110 111 112 113 114 115
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

class ConvOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

116 117 118
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
武毅 已提交
119 120
};

Q
QI JUN 已提交
121
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
122
class GemmConvKernel : public framework::OpKernel<T> {
123 124 125
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
126 127 128 129
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
130 131 132
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
133
    int groups = context.Attr<int>("groups");
134 135
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
136
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
137

138 139
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
140 141
    const int batch_size = static_cast<int>(input->dims()[0]);

C
chengduoZH 已提交
142
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
143
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
144
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
145
    std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
146

H
hedaoyuan 已提交
147
    // use col_shape in the im2col calculation
C
chengduoZH 已提交
148 149
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
150 151 152 153 154 155 156
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
157 158
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
159
    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
160 161 162
    // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
    // o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
163
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
164

C
chengduoZH 已提交
165
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
H
hedaoyuan 已提交
166
    Tensor col;
H
hedaoyuan 已提交
167 168 169
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
170
    Tensor col_matrix;
C
chengduoZH 已提交
171
    if (is_expand) {
X
Xin Pan 已提交
172
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
173 174 175
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
176

177 178
    framework::DDim input_shape =
        framework::slice_ddim(input->dims(), 1, input->dims().size());
C
chengduoZH 已提交
179

H
hedaoyuan 已提交
180 181
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
182 183
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
184 185 186 187 188 189 190 191
    framework::DDim output_matrix_shape = {
        output->dims()[1],
        output->numel() / (output->dims()[0] * output->dims()[1])};

    // convolution operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output->dims()[1]) / groups;

Q
QI JUN 已提交
192 193
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
194

Y
Yu Yang 已提交
195
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
196 197 198
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
199

C
chengduoZH 已提交
200 201
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
202

C
chengduoZH 已提交
203
        if (!is_expand) {
C
chengduoZH 已提交
204 205 206
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
207
        } else if (data_dim == 2U) {
C
chengduoZH 已提交
208
          // im2col
Q
QI JUN 已提交
209
          im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
210 211 212
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
213
        } else if (data_dim == 3U) {
C
chengduoZH 已提交
214
          // vol2col
Q
QI JUN 已提交
215
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
216
        }
C
chengduoZH 已提交
217 218 219 220

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
221 222
        blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
                    T(0.0));
H
hedaoyuan 已提交
223
      }
224 225 226 227
    }
  }
};

Q
QI JUN 已提交
228
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
229
class GemmConvGradKernel : public framework::OpKernel<T> {
230 231
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
232 233 234 235 236
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
237
    Tensor* filter_grad =
H
hedaoyuan 已提交
238
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
239 240 241 242
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
243

C
chengduoZH 已提交
244 245
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
246
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
247 248
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
249
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
H
hedaoyuan 已提交
250

C
chengduoZH 已提交
251
    const int batch_size = static_cast<int>(input->dims()[0]);
H
hedaoyuan 已提交
252

253 254
    auto& dev_ctx = context.template device_context<DeviceContext>();

C
chengduoZH 已提交
255
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
256
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
257
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
258 259
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(output_grad->dims()));
C
chengduoZH 已提交
260

C
chengduoZH 已提交
261 262 263
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
264 265 266 267 268 269 270
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
271
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
272 273

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
274 275 276 277
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
278
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
279

280 281
    framework::DDim input_shape =
        framework::slice_ddim(input->dims(), 1, input->dims().size());
C
chengduoZH 已提交
282

C
chengduoZH 已提交
283 284
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
285 286 287
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
C
chengduoZH 已提交
288 289 290
        output_grad->dims()[1],
        output_grad->numel() /
            (output_grad->dims()[0] * output_grad->dims()[1])};
C
chengduoZH 已提交
291

C
chengduoZH 已提交
292 293 294 295
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
C
chengduoZH 已提交
296

C
chengduoZH 已提交
297
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
C
chengduoZH 已提交
298 299 300 301
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
302
    Tensor col_matrix;
C
chengduoZH 已提交
303
    if (is_expand) {
X
Xin Pan 已提交
304
      col = context.AllocateTmpTensor<T, DeviceContext>(col_shape, dev_ctx);
C
chengduoZH 已提交
305 306 307
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
308

Q
QI JUN 已提交
309
    math::SetConstant<DeviceContext, T> set_zero;
Y
Yu Yang 已提交
310
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
C
chengduoZH 已提交
311 312 313 314

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
315 316 317
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
C
chengduoZH 已提交
318
        set_zero(dev_ctx, input_grad, static_cast<T>(0));
C
chengduoZH 已提交
319
      }
Q
QI JUN 已提交
320 321
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
322

C
chengduoZH 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
337 338
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
339
          }
C
chengduoZH 已提交
340 341
          blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
                      &col_matrix, T(0.0));
C
chengduoZH 已提交
342

C
chengduoZH 已提交
343
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
344
            col2im(dev_ctx, col, dilations, strides,
C
chengduoZH 已提交
345 346 347
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &in_grad_slice);
C
chengduoZH 已提交
348
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
349
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
350
          }
C
chengduoZH 已提交
351 352 353 354 355 356 357 358
        }
      }
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
359 360 361
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
362 363 364 365 366 367 368 369 370
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
371

C
chengduoZH 已提交
372
          if (!is_expand) {
C
chengduoZH 已提交
373 374 375
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
376
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
377
            im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
378 379 380
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &col);
C
chengduoZH 已提交
381
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
382
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
383
          }
C
chengduoZH 已提交
384 385 386 387

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
C
chengduoZH 已提交
388 389
          blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
                      &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
390 391 392 393 394
        }
      }
    }
  }
};
Z
zlx 已提交
395 396 397 398 399 400 401 402 403 404

template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

X
xzl 已提交
405 406 407
    PADDLE_ENFORCE_EQ(
        output->dims()[1] % input->dims()[1], 0,
        "The output channels must be a multiple of the input channels");
Z
zlx 已提交
408 409 410
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
411
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
Z
zlx 已提交
412
    auto& dev_ctx = context.template device_context<DeviceContext>();
413 414 415 416 417 418 419 420 421 422

    if (fuse_relu) {
      math::DepthwiseConvFunctor<DeviceContext, T, true> depthwiseConv;
      depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                    output);
    } else {
      math::DepthwiseConvFunctor<DeviceContext, T, false> depthwiseConv;
      depthwiseConv(dev_ctx, *input, filter, strides, paddings, dilations,
                    output);
    }
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
  }
};

template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor filter = *context.Input<Tensor>("Filter");

    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
444
    bool fuse_relu = context.Attr<bool>("fuse_relu_before_depthwise_conv");
445 446 447 448 449 450 451

    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
452 453 454 455 456 457 458 459 460 461 462 463

      if (fuse_relu) {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, true>
            depthwiseConvInputGrad;
        depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
                               paddings, dilations, input_grad);
      } else {
        math::DepthwiseConvInputGradFunctor<DeviceContext, T, false>
            depthwiseConvInputGrad;
        depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
                               paddings, dilations, input_grad);
      }
464 465 466 467 468
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
469 470 471 472 473 474 475 476 477 478 479
      if (fuse_relu) {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, true>
            depthwiseConvFilterGrad;
        depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides,
                                paddings, dilations, filter_grad);
      } else {
        math::DepthwiseConvFilterGradFunctor<DeviceContext, T, false>
            depthwiseConvFilterGrad;
        depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides,
                                paddings, dilations, filter_grad);
      }
480
    }
Z
zlx 已提交
481 482 483
  }
};

484 485
}  // namespace operators
}  // namespace paddle