test_helper.h 9.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16
#pragma once

#include <map>
17
#include <memory>
18 19 20
#include <random>
#include <string>
#include <vector>
21

Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
24
#include "paddle/fluid/platform/errors.h"
P
peizhilin 已提交
25
#include "paddle/fluid/platform/port.h"
26
#include "paddle/fluid/platform/profiler.h"
27

28 29
DECLARE_bool(use_mkldnn);

30
template <typename T>
31
void SetupTensor(paddle::framework::LoDTensor* input,
32
                 paddle::framework::DDim dims, T lower, T upper) {
33 34
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
35 36 37 38 39
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  for (int i = 0; i < input->numel(); ++i) {
    input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
40 41 42
  }
}

43
template <typename T>
44 45
void SetupTensor(paddle::framework::LoDTensor* input,
                 paddle::framework::DDim dims, const std::vector<T>& data) {
46
  CHECK_EQ(paddle::framework::product(dims), static_cast<int64_t>(data.size()));
47 48
  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  memcpy(input_ptr, data.data(), input->numel() * sizeof(T));
49 50
}

51
template <typename T>
52 53 54
void SetupLoDTensor(paddle::framework::LoDTensor* input,
                    const paddle::framework::LoD& lod, T lower, T upper) {
  input->set_lod(lod);
55
  int dim = lod[0][lod[0].size() - 1];
56 57 58 59
  SetupTensor<T>(input, {dim, 1}, lower, upper);
}

template <typename T>
60
void SetupLoDTensor(paddle::framework::LoDTensor* input,
61
                    paddle::framework::DDim dims,
62 63
                    const paddle::framework::LoD lod,
                    const std::vector<T>& data) {
64
  const size_t level = lod.size() - 1;
65
  CHECK_EQ(dims[0], static_cast<int64_t>((lod[level]).back()));
66
  input->set_lod(lod);
67
  SetupTensor<T>(input, dims, data);
68 69 70
}

template <typename T>
71 72
void CheckError(const paddle::framework::LoDTensor& output1,
                const paddle::framework::LoDTensor& output2) {
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  // Check lod information
  EXPECT_EQ(output1.lod(), output2.lod());

  EXPECT_EQ(output1.dims(), output2.dims());
  EXPECT_EQ(output1.numel(), output2.numel());

  T err = static_cast<T>(0);
  if (typeid(T) == typeid(float)) {
    err = 1E-3;
  } else if (typeid(T) == typeid(double)) {
    err = 1E-6;
  } else {
    err = 0;
  }

  size_t count = 0;
  for (int64_t i = 0; i < output1.numel(); ++i) {
    if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
      count++;
    }
  }
94
  EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
95 96
}

97 98
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
    paddle::framework::Executor* executor, paddle::framework::Scope* scope,
T
Tao Luo 已提交
99 100 101
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  if (is_combined) {
    // All parameters are saved in a single file.
    // Hard-coding the file names of program and parameters in unittest.
    // The file names should be consistent with that used in Python API
    //  `fluid.io.save_inference_model`.
    inference_program =
        paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
                                dirname + "/" + param_filename);
  } else {
    // Parameters are saved in separate files sited in the specified
    // `dirname`.
    inference_program = paddle::inference::Load(executor, scope, dirname);
  }
  return inference_program;
}

std::vector<std::vector<int64_t>> GetFeedTargetShapes(
T
Tao Luo 已提交
120 121 122
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
123 124 125 126
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

T
Tao Luo 已提交
127 128
  auto inference_program = InitProgram(&executor, scope, dirname, is_combined,
                                       prog_filename, param_filename);
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  auto& global_block = inference_program->Block(0);

  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  std::vector<std::vector<int64_t>> feed_target_shapes;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    auto* var = global_block.FindVar(feed_target_names[i]);
    std::vector<int64_t> var_shape = var->GetShape();
    feed_target_shapes.push_back(var_shape);
  }

  delete scope;
  return feed_target_shapes;
}

144
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
145 146
void TestInference(const std::string& dirname,
                   const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
147
                   const std::vector<paddle::framework::FetchType*>& cpu_fetchs,
148
                   const int repeat = 1, const bool is_combined = false) {
149
  // 1. Define place, executor, scope
150 151 152 153
  auto place = Place();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

154 155 156 157 158 159
  // Profile the performance
  paddle::platform::ProfilerState state;
  if (paddle::platform::is_cpu_place(place)) {
    state = paddle::platform::ProfilerState::kCPU;
  } else {
#ifdef PADDLE_WITH_CUDA
160
    state = paddle::platform::ProfilerState::kAll;
161 162 163 164
    // The default device_id of paddle::platform::CUDAPlace is 0.
    // Users can get the device_id using:
    //   int device_id = place.GetDeviceId();
    paddle::platform::SetDeviceId(0);
Q
QI JUN 已提交
165 166
#else
    PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
167 168 169
#endif
  }

170 171
  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
172 173 174

  // Enable the profiler
  paddle::platform::EnableProfiler(state);
175
  {
176
    paddle::platform::RecordEvent record_event("init_program");
177
    inference_program = InitProgram(&executor, scope, dirname, is_combined);
178
  }
X
Xin Pan 已提交
179

180 181
  // Disable the profiler and print the timing information
  paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
182
                                    "load_program_profiler");
183
  paddle::platform::ResetProfiler();
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

  // 3. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();

  // 4. Prepare inputs: set up maps for feed targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    // Please make sure that cpu_feeds[i] is right for feed_target_names[i]
    feed_targets[feed_target_names[i]] = cpu_feeds[i];
  }

  // 5. Define Tensor to get the outputs: set up maps for fetch targets
199
  std::map<std::string, paddle::framework::FetchType*> fetch_targets;
200 201 202 203
  for (size_t i = 0; i < fetch_target_names.size(); ++i) {
    fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
  }

204 205 206 207
  // 6. If export Flags_use_mkldnn=True, use mkldnn related ops.
  if (FLAGS_use_mkldnn) executor.EnableMKLDNN(*inference_program);

  // 7. Run the inference program
208
  {
209 210 211 212
    if (!CreateVars) {
      // If users don't want to create and destroy variables every time they
      // run, they need to set `create_vars` to false and manually call
      // `CreateVariables` before running.
L
Liu Yiqun 已提交
213
      executor.CreateVariables(*inference_program, scope, 0);
214 215
    }

216
    // Ignore the profiling results of the first run
217
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
T
tensor-tang 已提交
218
    bool CreateLocalScope = CreateVars;
219 220
    if (PrepareContext) {
      ctx = executor.Prepare(*inference_program, 0);
221
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
222
                                  &fetch_targets, CreateLocalScope, CreateVars);
223
    } else {
224
      executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
225
                   CreateLocalScope, CreateVars);
226
    }
227 228 229 230

    // Enable the profiler
    paddle::platform::EnableProfiler(state);

231 232
    // Run repeat times to profile the performance
    for (int i = 0; i < repeat; ++i) {
233
      paddle::platform::RecordEvent record_event("run_inference");
234

235
      if (PrepareContext) {
L
Liu Yiqun 已提交
236
        // Note: if you change the inference_program, you need to call
237
        // executor.Prepare() again to get a new ExecutorPrepareContext.
238
        executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
239 240
                                    &fetch_targets, CreateLocalScope,
                                    CreateVars);
241
      } else {
242
        executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
243
                     CreateLocalScope, CreateVars);
244
      }
245 246
    }

247 248
    // Disable the profiler and print the timing information
    paddle::platform::DisableProfiler(
D
daminglu 已提交
249
        paddle::platform::EventSortingKey::kDefault, "run_inference_profiler");
250 251
    paddle::platform::ResetProfiler();
  }
252 253 254

  delete scope;
}