test_helper.h 9.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16
#pragma once

#include <map>
17
#include <memory>
18 19 20
#include <random>
#include <string>
#include <vector>
21

Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
P
peizhilin 已提交
24
#include "paddle/fluid/platform/port.h"
25
#include "paddle/fluid/platform/profiler.h"
26

27 28
DECLARE_bool(use_mkldnn);

29
template <typename T>
30
void SetupTensor(paddle::framework::LoDTensor* input,
31
                 paddle::framework::DDim dims, T lower, T upper) {
32 33
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
34 35 36 37 38
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  for (int i = 0; i < input->numel(); ++i) {
    input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
39 40 41
  }
}

42
template <typename T>
43 44
void SetupTensor(paddle::framework::LoDTensor* input,
                 paddle::framework::DDim dims, const std::vector<T>& data) {
45
  CHECK_EQ(paddle::framework::product(dims), static_cast<int64_t>(data.size()));
46 47
  T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
  memcpy(input_ptr, data.data(), input->numel() * sizeof(T));
48 49
}

50
template <typename T>
51 52 53
void SetupLoDTensor(paddle::framework::LoDTensor* input,
                    const paddle::framework::LoD& lod, T lower, T upper) {
  input->set_lod(lod);
54
  int dim = lod[0][lod[0].size() - 1];
55 56 57 58
  SetupTensor<T>(input, {dim, 1}, lower, upper);
}

template <typename T>
59
void SetupLoDTensor(paddle::framework::LoDTensor* input,
60
                    paddle::framework::DDim dims,
61 62
                    const paddle::framework::LoD lod,
                    const std::vector<T>& data) {
63
  const size_t level = lod.size() - 1;
64
  CHECK_EQ(dims[0], static_cast<int64_t>((lod[level]).back()));
65
  input->set_lod(lod);
66
  SetupTensor<T>(input, dims, data);
67 68 69
}

template <typename T>
70 71
void CheckError(const paddle::framework::LoDTensor& output1,
                const paddle::framework::LoDTensor& output2) {
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  // Check lod information
  EXPECT_EQ(output1.lod(), output2.lod());

  EXPECT_EQ(output1.dims(), output2.dims());
  EXPECT_EQ(output1.numel(), output2.numel());

  T err = static_cast<T>(0);
  if (typeid(T) == typeid(float)) {
    err = 1E-3;
  } else if (typeid(T) == typeid(double)) {
    err = 1E-6;
  } else {
    err = 0;
  }

  size_t count = 0;
  for (int64_t i = 0; i < output1.numel(); ++i) {
    if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
      count++;
    }
  }
93
  EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
94 95
}

96 97
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
    paddle::framework::Executor* executor, paddle::framework::Scope* scope,
T
Tao Luo 已提交
98 99 100
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  if (is_combined) {
    // All parameters are saved in a single file.
    // Hard-coding the file names of program and parameters in unittest.
    // The file names should be consistent with that used in Python API
    //  `fluid.io.save_inference_model`.
    inference_program =
        paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
                                dirname + "/" + param_filename);
  } else {
    // Parameters are saved in separate files sited in the specified
    // `dirname`.
    inference_program = paddle::inference::Load(executor, scope, dirname);
  }
  return inference_program;
}

std::vector<std::vector<int64_t>> GetFeedTargetShapes(
T
Tao Luo 已提交
119 120 121
    const std::string& dirname, const bool is_combined = false,
    const std::string& prog_filename = "__model_combined__",
    const std::string& param_filename = "__params_combined__") {
122 123 124 125
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

T
Tao Luo 已提交
126 127
  auto inference_program = InitProgram(&executor, scope, dirname, is_combined,
                                       prog_filename, param_filename);
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  auto& global_block = inference_program->Block(0);

  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  std::vector<std::vector<int64_t>> feed_target_shapes;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    auto* var = global_block.FindVar(feed_target_names[i]);
    std::vector<int64_t> var_shape = var->GetShape();
    feed_target_shapes.push_back(var_shape);
  }

  delete scope;
  return feed_target_shapes;
}

143
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
144 145
void TestInference(const std::string& dirname,
                   const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
146
                   const std::vector<paddle::framework::FetchType*>& cpu_fetchs,
147
                   const int repeat = 1, const bool is_combined = false) {
148
  // 1. Define place, executor, scope
149 150 151 152
  auto place = Place();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

153 154 155 156 157 158
  // Profile the performance
  paddle::platform::ProfilerState state;
  if (paddle::platform::is_cpu_place(place)) {
    state = paddle::platform::ProfilerState::kCPU;
  } else {
#ifdef PADDLE_WITH_CUDA
159
    state = paddle::platform::ProfilerState::kAll;
160 161 162 163
    // The default device_id of paddle::platform::CUDAPlace is 0.
    // Users can get the device_id using:
    //   int device_id = place.GetDeviceId();
    paddle::platform::SetDeviceId(0);
Q
QI JUN 已提交
164 165
#else
    PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
166 167 168
#endif
  }

169 170
  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
171 172 173

  // Enable the profiler
  paddle::platform::EnableProfiler(state);
174
  {
175
    paddle::platform::RecordEvent record_event("init_program");
176
    inference_program = InitProgram(&executor, scope, dirname, is_combined);
177
  }
X
Xin Pan 已提交
178

179 180
  // Disable the profiler and print the timing information
  paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
181
                                    "load_program_profiler");
182
  paddle::platform::ResetProfiler();
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

  // 3. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();

  // 4. Prepare inputs: set up maps for feed targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    // Please make sure that cpu_feeds[i] is right for feed_target_names[i]
    feed_targets[feed_target_names[i]] = cpu_feeds[i];
  }

  // 5. Define Tensor to get the outputs: set up maps for fetch targets
198
  std::map<std::string, paddle::framework::FetchType*> fetch_targets;
199 200 201 202
  for (size_t i = 0; i < fetch_target_names.size(); ++i) {
    fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
  }

203 204 205 206
  // 6. If export Flags_use_mkldnn=True, use mkldnn related ops.
  if (FLAGS_use_mkldnn) executor.EnableMKLDNN(*inference_program);

  // 7. Run the inference program
207
  {
208 209 210 211
    if (!CreateVars) {
      // If users don't want to create and destroy variables every time they
      // run, they need to set `create_vars` to false and manually call
      // `CreateVariables` before running.
L
Liu Yiqun 已提交
212
      executor.CreateVariables(*inference_program, scope, 0);
213 214
    }

215
    // Ignore the profiling results of the first run
216
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
T
tensor-tang 已提交
217
    bool CreateLocalScope = CreateVars;
218 219
    if (PrepareContext) {
      ctx = executor.Prepare(*inference_program, 0);
220
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
221
                                  &fetch_targets, CreateLocalScope, CreateVars);
222
    } else {
223
      executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
224
                   CreateLocalScope, CreateVars);
225
    }
226 227 228 229

    // Enable the profiler
    paddle::platform::EnableProfiler(state);

230 231
    // Run repeat times to profile the performance
    for (int i = 0; i < repeat; ++i) {
232
      paddle::platform::RecordEvent record_event("run_inference");
233

234
      if (PrepareContext) {
L
Liu Yiqun 已提交
235
        // Note: if you change the inference_program, you need to call
236
        // executor.Prepare() again to get a new ExecutorPrepareContext.
237
        executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
T
tensor-tang 已提交
238 239
                                    &fetch_targets, CreateLocalScope,
                                    CreateVars);
240
      } else {
241
        executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
T
tensor-tang 已提交
242
                     CreateLocalScope, CreateVars);
243
      }
244 245
    }

246 247
    // Disable the profiler and print the timing information
    paddle::platform::DisableProfiler(
D
daminglu 已提交
248
        paddle::platform::EventSortingKey::kDefault, "run_inference_profiler");
249 250
    paddle::platform::ResetProfiler();
  }
251 252 253

  delete scope;
}