sequence_pooling.cc 18.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/math/sequence_pooling.h"

A
Abhinav Arora 已提交
17
#include <string>
M
minqiyang 已提交
18

T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
20 21
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {

27
using Tensor = phi::DenseTensor;
28
using LoDTensor = phi::DenseTensor;
29 30
template <typename T,
          int MajorType = Eigen::RowMajor,
D
dzhwinter 已提交
31
          typename IndexType = Eigen::DenseIndex>
32
using EigenVector = phi::EigenVector<T, MajorType, IndexType>;
33 34
template <typename T,
          int MajorType = Eigen::RowMajor,
D
dzhwinter 已提交
35
          typename IndexType = Eigen::DenseIndex>
36
using EigenMatrix = phi::EigenMatrix<T, MajorType, IndexType>;
D
dzhwinter 已提交
37

J
Jacek Czaja 已提交
38
template <typename T, bool is_test>
D
dzhwinter 已提交
39
class MaxSeqPoolFunctor {
40
 public:
L
Leo Chen 已提交
41
  void operator()(const phi::CPUContext& context,
42
                  const phi::DenseTensor& input,
43
                  T pad_value,
44
                  phi::DenseTensor* output,
45
                  phi::DenseTensor* index) {
46 47 48
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto idx_dims = index->dims();
49 50
    PADDLE_ENFORCE_GT(in_dims.size(),
                      1,
51 52 53 54
                      platform::errors::InvalidArgument(
                          "The rank of input shall be greater than 1, but got "
                          "the rank is %ld. Please check the input value",
                          in_dims.size()));
55 56
    PADDLE_ENFORCE_GT(out_dims.size(),
                      1,
57 58 59 60
                      platform::errors::InvalidArgument(
                          "The rank of output shall be greater than 1, but got "
                          "the rank is %ld. Please check the input value",
                          out_dims.size()));
D
dangqingqing 已提交
61
    for (int64_t i = 1; i < in_dims.size(); ++i) {
62
      PADDLE_ENFORCE_EQ(
63 64
          in_dims[i],
          out_dims[i],
65 66 67
          platform::errors::InvalidArgument(
              "The dimension of input and output shall be same. Expected %ld "
              "== %ld, but got %ld != %ld. Please check the input value.",
68 69 70 71
              in_dims[i],
              out_dims[i],
              in_dims[i],
              out_dims[i]));
72
    }
73
    PADDLE_ENFORCE_EQ(
74 75
        idx_dims,
        out_dims,
76 77 78
        platform::errors::InvalidArgument(
            "The dimension of index and output shall be same. Expected %ld == "
            "%ld, but got %ld != %ld. Please check the input value.",
79 80 81 82
            idx_dims,
            out_dims,
            idx_dims,
            out_dims));
83

84 85
    auto lod_level = input.lod().size();
    auto starts = input.lod()[lod_level - 1];
86 87 88 89 90 91 92
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
    int* max_index = index->data<int>();

    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
93 94 95 96 97 98 99
      if (starts[i] == starts[i + 1]) {
        for (int64_t k = 0; k < dim; ++k) {
          out_data[i * dim + k] = pad_value;
          max_index[i * dim + k] = -1;
        }
        continue;
      }
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
      for (int64_t k = 0; k < dim; ++k) {
        out_data[i * dim + k] = in_data[starts[i] * dim + k];
        max_index[i * dim + k] = starts[i];
      }
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
            max_index[i * dim + k] = j;
          }
        }
      }
    }
  }
};
J
Jacek Czaja 已提交
115 116 117 118 119
// Instantisation of Max Sequence Pooling for test phase eg. no need to fill
// index buffer
template <typename T>
class MaxSeqPoolFunctor<T, true> {
 public:
L
Leo Chen 已提交
120
  void operator()(const phi::CPUContext& context,
121
                  const phi::DenseTensor& input,
122
                  T pad_value,
123
                  phi::DenseTensor* output,
124
                  phi::DenseTensor* index) {
J
Jacek Czaja 已提交
125 126
    auto in_dims = input.dims();
    auto out_dims = output->dims();
127 128
    PADDLE_ENFORCE_GT(in_dims.size(),
                      1,
129 130 131 132
                      platform::errors::InvalidArgument(
                          "The rank of input shall be greater than 1, but got "
                          "%ld <= 1. Please check the input value.",
                          in_dims.size()));
133 134
    PADDLE_ENFORCE_GT(out_dims.size(),
                      1,
135 136 137 138
                      platform::errors::InvalidArgument(
                          "The rank of output shall be greater than 1, but got "
                          "%ld <= 1. Please check the input value.",
                          out_dims.size()));
J
Jacek Czaja 已提交
139
    for (int64_t i = 1; i < in_dims.size(); ++i) {
140
      PADDLE_ENFORCE_EQ(
141 142
          in_dims[i],
          out_dims[i],
143 144 145
          platform::errors::InvalidArgument(
              "The dimension of input and output shall be same. Expected %ld "
              "== %ld, but got %ld != %ld. Please check the input value.",
146 147 148 149
              in_dims[i],
              out_dims[i],
              in_dims[i],
              out_dims[i]));
J
Jacek Czaja 已提交
150 151
    }

152 153
    auto lod_level = input.lod().size();
    auto starts = input.lod()[lod_level - 1];
J
Jacek Czaja 已提交
154 155
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
156

J
Jacek Czaja 已提交
157 158 159
    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
160 161 162 163 164 165
      if (starts[i] == starts[i + 1]) {
        for (int64_t k = 0; k < dim; ++k) {
          out_data[i * dim + k] = pad_value;
        }
        continue;
      }
166 167
      std::memcpy(
          &out_data[i * dim], &in_data[starts[i] * dim], dim * sizeof(T));
J
Jacek Czaja 已提交
168 169 170 171 172 173 174 175 176 177
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
          }
        }
      }
    }
  }
};
178
template <typename T>
D
dzhwinter 已提交
179
class MaxSeqPoolGradFunctor {
180
 public:
L
Leo Chen 已提交
181
  void operator()(const phi::CPUContext& context,
182
                  const phi::DenseTensor& out_grad,
183
                  const phi::DenseTensor& index,
184
                  phi::DenseTensor* in_grad) {
185 186 187
    auto og_dims = out_grad.dims();
    auto ig_dims = in_grad->dims();
    auto idx_dims = index.dims();
188 189
    PADDLE_ENFORCE_GT(og_dims.size(),
                      1,
190 191 192 193
                      platform::errors::InvalidArgument(
                          "The rank of output@Grad shall be greater than 1, "
                          "but got %ld <= 1. Please check the input value.",
                          og_dims.size()));
194 195
    PADDLE_ENFORCE_GT(ig_dims.size(),
                      1,
196 197 198 199
                      platform::errors::InvalidArgument(
                          "The rank of input@Grad shall be greater than 1, but "
                          "got %ld <= 1. Please check the input value.",
                          ig_dims.size()));
D
dangqingqing 已提交
200
    for (int64_t i = 1; i < og_dims.size(); ++i) {
201 202
      PADDLE_ENFORCE_EQ(og_dims[i],
                        ig_dims[i],
203 204 205 206
                        platform::errors::InvalidArgument(
                            "The dimension of input@Grad and output@Grad shall "
                            "be same. Expected %ld == %ld, but got %ld != %ld. "
                            "Please check the input value.",
207 208 209 210
                            og_dims[i],
                            ig_dims[i],
                            og_dims[i],
                            ig_dims[i]));
211
    }
212
    PADDLE_ENFORCE_EQ(
213 214
        idx_dims,
        og_dims,
215 216 217
        platform::errors::InvalidArgument(
            "The dimension of index and output@Grad shall be same. Expected "
            "%ld == %ld, but got %ld != %ld. Please check the input value.",
218 219 220 221
            idx_dims,
            og_dims,
            idx_dims,
            og_dims));
222 223 224 225 226

    const T* og_data = out_grad.data<T>();
    const int* max_index = index.data<int>();
    T* ig_data = in_grad->data<T>();

L
Leo Chen 已提交
227
    phi::funcs::SetConstant<phi::CPUContext, T> set_zero;
228 229 230
    set_zero(context, in_grad, static_cast<T>(0.0));
    int64_t num_seq = og_dims[0];
    int64_t dim = out_grad.numel() / num_seq;
D
dangqingqing 已提交
231 232
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t j = 0; j < dim; ++j) {
233
        int step_id = max_index[i * dim + j];
234
        if (step_id == -1) continue;
235 236 237 238 239 240
        ig_data[step_id * dim + j] = og_data[i * dim + j];
      }
    }
  }
};

241
template <typename T>
B
bingyanghuang 已提交
242
class LastSeqPoolFunctor {
243
 public:
L
Leo Chen 已提交
244
  void operator()(const phi::CPUContext& context,
245
                  const phi::DenseTensor& input,
246
                  T pad_value,
247
                  phi::DenseTensor* output) {
B
bingyanghuang 已提交
248 249 250
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();
B
bingyanghuang 已提交
251

B
bingyanghuang 已提交
252 253
    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
254 255
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
B
bingyanghuang 已提交
256
    int seq_num = static_cast<int>(lod.size()) - 1;
B
bingyanghuang 已提交
257 258 259
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
260 261 262 263 264 265 266 267 268 269
      if (seq_len == 0) {
        for (int j = 0; j < item_size; ++j) {
          out_data[j] = pad_value;
        }
      } else {
        // Point to the begin of next sequence
        in_data += seq_len * item_size;
        // Copy the last item of sequence to output
        std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
      }
B
bingyanghuang 已提交
270
      out_data += item_size;
B
bingyanghuang 已提交
271
    }
B
bingyanghuang 已提交
272 273 274 275 276 277
  }
};

template <typename T>
class FirstSeqPoolFunctor {
 public:
L
Leo Chen 已提交
278
  void operator()(const phi::CPUContext& context,
279
                  const phi::DenseTensor& input,
280
                  T pad_value,
281
                  phi::DenseTensor* output) {
B
bingyanghuang 已提交
282 283 284 285 286 287
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();

    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
288 289
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
B
bingyanghuang 已提交
290 291 292 293
    int seq_num = static_cast<int>(lod.size()) - 1;
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
294 295 296 297 298 299 300 301 302 303
      if (seq_len == 0) {
        for (int j = 0; j < item_size; ++j) {
          out_data[j] = pad_value;
        }
      } else {
        // Copy the first item of sequence to output
        std::memcpy(out_data, in_data, item_size * sizeof(T));
        // Point to the next sequence
        in_data += seq_len * item_size;
      }
B
bingyanghuang 已提交
304
      out_data += item_size;
B
bingyanghuang 已提交
305
    }
B
bingyanghuang 已提交
306
  }
307 308
};

M
minqiyang 已提交
309 310 311
template <typename T>
class SumSeqPoolGradFunctor {
 public:
L
Leo Chen 已提交
312
  void operator()(const phi::CPUContext& context,
313 314
                  const phi::DenseTensor& out_grad,
                  phi::DenseTensor* in_grad) {
315 316
    auto lod_level = in_grad->lod().size();
    auto lod = in_grad->lod()[lod_level - 1];
M
minqiyang 已提交
317 318
    int64_t out_w = out_grad.numel() / out_grad.dims()[0];
    int64_t in_w = in_grad->numel() / in_grad->dims()[0];
319 320
    PADDLE_ENFORCE_EQ(in_w,
                      out_w,
321 322 323 324
                      platform::errors::InvalidArgument(
                          "The feature size of input@Grad and output@Grad "
                          "shall be same. Expected %ld == %ld, but got %ld != "
                          "%ld. Please check the input value.",
325 326 327 328
                          in_w,
                          out_w,
                          in_w,
                          out_w));
M
minqiyang 已提交
329 330
    const T* out_g_data = out_grad.data<T>();
    T* in_g_data = in_grad->mutable_data<T>(context.GetPlace());
L
Leo Chen 已提交
331
    auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(context);
M
minqiyang 已提交
332 333
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
334
      if (h == 0) continue;
M
minqiyang 已提交
335 336 337 338 339 340 341 342 343 344
      int64_t in_offset = lod[i] * in_w;
      const T* out_pos = out_g_data + i * out_w;
      T* in_pos = in_g_data + in_offset;
      for (int r = 0; r != h; ++r) {
        blas.VCOPY(in_w, out_pos, in_pos + r * in_w);
      }
    }
  }
};

D
dzhwinter 已提交
345
template <typename T>
L
Leo Chen 已提交
346
class SequencePoolFunctor<phi::CPUContext, T> {
D
dzhwinter 已提交
347 348
 public:
  /* max pool has index output */
L
Leo Chen 已提交
349
  void operator()(const phi::CPUContext& context,
350 351
                  const std::string pooltype,
                  T pad_value,
352 353
                  const phi::DenseTensor& input,
                  phi::DenseTensor* output,
354
                  bool is_test,
355
                  phi::DenseTensor* index = nullptr) {
D
dzhwinter 已提交
356
    if (pooltype == "MAX") {
J
Jacek Czaja 已提交
357 358
      if (is_test) {
        math::MaxSeqPoolFunctor<T, true> max_pool;
359
        max_pool(context, input, pad_value, output, index);
J
Jacek Czaja 已提交
360 361
      } else {
        math::MaxSeqPoolFunctor<T, false> max_pool;
362
        max_pool(context, input, pad_value, output, index);
J
Jacek Czaja 已提交
363
      }
D
dzhwinter 已提交
364 365
      return;
    }
B
bingyanghuang 已提交
366 367
    if (pooltype == "LAST") {
      math::LastSeqPoolFunctor<T> last_pool;
368
      last_pool(context, input, pad_value, output);
369 370
      return;
    }
B
bingyanghuang 已提交
371 372
    if (pooltype == "FIRST") {
      math::FirstSeqPoolFunctor<T> first_pool;
373
      first_pool(context, input, pad_value, output);
B
bingyanghuang 已提交
374 375
      return;
    }
376 377
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
T
tensor-tang 已提交
378 379
    if (pooltype == "SUM") {
      auto place = context.GetPlace();
380
      PADDLE_ENFORCE_EQ(
381 382
          platform::is_cpu_place(place),
          true,
383 384
          platform::errors::InvalidArgument(
              "Sequence_pool should run on CPU Device when pooltype is SUM"));
T
tensor-tang 已提交
385 386
      const T* src = input.data<T>();
      T* dst = output->mutable_data<T>(place);
T
tensor-tang 已提交
387 388 389
      jit::seq_pool_attr_t attr(
          static_cast<int>(input.numel() / input.dims()[0]),
          jit::SeqPoolType::kSum);
390 391 392
      auto seqpool =
          jit::KernelFuncs<jit::SeqPoolTuple<T>, platform::CPUPlace>::Cache()
              .At(attr);
T
tensor-tang 已提交
393 394
      for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
        attr.h = static_cast<int>(lod[i + 1] - lod[i]);
395 396 397 398 399 400 401
        if (attr.h == 0) {
          for (int j = 0; j < attr.w; ++j) {
            dst[j] = pad_value;
          }
        } else {
          seqpool(src, dst, &attr);
        }
T
tensor-tang 已提交
402 403 404 405 406
        dst += attr.w;
        src += attr.h * attr.w;
      }
      return;
    }
D
dzhwinter 已提交
407 408
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
409 410 411 412 413 414 415 416
      Tensor out_t = output->Slice(i, i + 1);
      int64_t w = input.numel() / input.dims()[0];
      if (lod[i] == lod[i + 1]) {
        for (int j = 0; j < w; ++j) {
          out_t.data<T>()[j] = pad_value;
        }
        continue;
      }
D
dzhwinter 已提交
417 418 419
      Tensor in_t =
          input.Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
420
      auto in_e = EigenMatrix<T>::From(in_t, phi::make_ddim({h, w}));
D
dzhwinter 已提交
421 422 423 424 425 426 427
      auto out_e = EigenVector<T>::Flatten(out_t);
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else {
428 429 430 431
        PADDLE_THROW(platform::errors::InvalidArgument(
            "unsupported pooling pooltype: %s. Only support \"AVERAGE\" and "
            "\"SQRT\"",
            pooltype));
D
dzhwinter 已提交
432 433 434 435 436 437
      }
    }
  }
};

template <typename T>
L
Leo Chen 已提交
438
class SequencePoolGradFunctor<phi::CPUContext, T> {
D
dzhwinter 已提交
439
 public:
L
Leo Chen 已提交
440
  void operator()(const phi::CPUContext& context,
441
                  const std::string pooltype,
442 443
                  const phi::DenseTensor& out_grad,
                  phi::DenseTensor* in_grad,
D
dzhwinter 已提交
444
                  /* max pool has index */
445
                  const phi::DenseTensor* index = nullptr) {
D
dzhwinter 已提交
446 447 448 449 450 451 452 453
    if (pooltype == "MAX") {
      math::MaxSeqPoolGradFunctor<T> max_pool_grad;
      max_pool_grad(context, out_grad, *index, in_grad);
      return;
    }

    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
L
Leo Chen 已提交
454
      phi::funcs::SetConstant<phi::CPUContext, T> functor;
D
dzhwinter 已提交
455 456
      functor(context, in_grad, 0);
    }
M
minqiyang 已提交
457 458

    if (pooltype == "SUM") {
M
minqiyang 已提交
459 460
      math::SumSeqPoolGradFunctor<T> sum_pool_grad;
      sum_pool_grad(context, out_grad, in_grad);
M
minqiyang 已提交
461 462 463
      return;
    }

464 465
    auto lod_level = in_grad->lod().size();
    auto lod = in_grad->lod()[lod_level - 1];
D
dzhwinter 已提交
466 467
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
468
      if (lod[i] == lod[i + 1]) continue;
D
dzhwinter 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
      auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
      auto out_g_t = out_grad.Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = in_grad->numel() / in_grad->dims()[0];
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
      Eigen::DSizes<int, 2> bcast(h, 1);

      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
      } else {
489 490 491 492
        PADDLE_THROW(platform::errors::InvalidArgument(
            "unsupported pooling pooltype: %s. Only support \"AVERAGE\", "
            "\"SQRT\", \"LAST\" and \"FIRST\"",
            pooltype));
D
dzhwinter 已提交
493 494 495 496 497
      }
    }
  }
};

L
Leo Chen 已提交
498 499 500 501
template class SequencePoolFunctor<phi::CPUContext, float>;
template class SequencePoolFunctor<phi::CPUContext, double>;
template class SequencePoolGradFunctor<phi::CPUContext, float>;
template class SequencePoolGradFunctor<phi::CPUContext, double>;
502 503 504 505

}  // namespace math
}  // namespace operators
}  // namespace paddle