sequence_pooling.cc 17.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/math/sequence_pooling.h"

A
Abhinav Arora 已提交
17
#include <string>
M
minqiyang 已提交
18

T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
20 21
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {

D
dzhwinter 已提交
27 28 29 30 31 32 33 34 35
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

J
Jacek Czaja 已提交
36
template <typename T, bool is_test>
D
dzhwinter 已提交
37
class MaxSeqPoolFunctor {
38
 public:
Q
QI JUN 已提交
39
  void operator()(const platform::CPUDeviceContext& context,
40
                  const framework::LoDTensor& input, T pad_value,
41
                  framework::LoDTensor* output, framework::Tensor* index) {
42 43 44
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto idx_dims = index->dims();
45
    PADDLE_ENFORCE_GT(in_dims.size(), 1,
46 47 48 49
                      platform::errors::InvalidArgument(
                          "The rank of input shall be greater than 1, but got "
                          "the rank is %ld. Please check the input value",
                          in_dims.size()));
50
    PADDLE_ENFORCE_GT(out_dims.size(), 1,
51 52 53 54
                      platform::errors::InvalidArgument(
                          "The rank of output shall be greater than 1, but got "
                          "the rank is %ld. Please check the input value",
                          out_dims.size()));
D
dangqingqing 已提交
55
    for (int64_t i = 1; i < in_dims.size(); ++i) {
56 57 58 59 60 61
      PADDLE_ENFORCE_EQ(
          in_dims[i], out_dims[i],
          platform::errors::InvalidArgument(
              "The dimension of input and output shall be same. Expected %ld "
              "== %ld, but got %ld != %ld. Please check the input value.",
              in_dims[i], out_dims[i], in_dims[i], out_dims[i]));
62
    }
63 64 65 66 67 68
    PADDLE_ENFORCE_EQ(
        idx_dims, out_dims,
        platform::errors::InvalidArgument(
            "The dimension of index and output shall be same. Expected %ld == "
            "%ld, but got %ld != %ld. Please check the input value.",
            idx_dims, out_dims, idx_dims, out_dims));
69

70 71
    auto lod_level = input.lod().size();
    auto starts = input.lod()[lod_level - 1];
72 73 74 75 76 77 78
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
    int* max_index = index->data<int>();

    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
79 80 81 82 83 84 85
      if (starts[i] == starts[i + 1]) {
        for (int64_t k = 0; k < dim; ++k) {
          out_data[i * dim + k] = pad_value;
          max_index[i * dim + k] = -1;
        }
        continue;
      }
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
      for (int64_t k = 0; k < dim; ++k) {
        out_data[i * dim + k] = in_data[starts[i] * dim + k];
        max_index[i * dim + k] = starts[i];
      }
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
            max_index[i * dim + k] = j;
          }
        }
      }
    }
  }
};
J
Jacek Czaja 已提交
101 102 103 104 105 106
// Instantisation of Max Sequence Pooling for test phase eg. no need to fill
// index buffer
template <typename T>
class MaxSeqPoolFunctor<T, true> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
107
                  const framework::LoDTensor& input, T pad_value,
108
                  framework::LoDTensor* output, framework::Tensor* index) {
J
Jacek Czaja 已提交
109 110
    auto in_dims = input.dims();
    auto out_dims = output->dims();
111
    PADDLE_ENFORCE_GT(in_dims.size(), 1,
112 113 114 115
                      platform::errors::InvalidArgument(
                          "The rank of input shall be greater than 1, but got "
                          "%ld <= 1. Please check the input value.",
                          in_dims.size()));
116
    PADDLE_ENFORCE_GT(out_dims.size(), 1,
117 118 119 120
                      platform::errors::InvalidArgument(
                          "The rank of output shall be greater than 1, but got "
                          "%ld <= 1. Please check the input value.",
                          out_dims.size()));
J
Jacek Czaja 已提交
121
    for (int64_t i = 1; i < in_dims.size(); ++i) {
122 123 124 125 126 127
      PADDLE_ENFORCE_EQ(
          in_dims[i], out_dims[i],
          platform::errors::InvalidArgument(
              "The dimension of input and output shall be same. Expected %ld "
              "== %ld, but got %ld != %ld. Please check the input value.",
              in_dims[i], out_dims[i], in_dims[i], out_dims[i]));
J
Jacek Czaja 已提交
128 129
    }

130 131
    auto lod_level = input.lod().size();
    auto starts = input.lod()[lod_level - 1];
J
Jacek Czaja 已提交
132 133
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
134

J
Jacek Czaja 已提交
135 136 137
    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
138 139 140 141 142 143
      if (starts[i] == starts[i + 1]) {
        for (int64_t k = 0; k < dim; ++k) {
          out_data[i * dim + k] = pad_value;
        }
        continue;
      }
J
Jacek Czaja 已提交
144 145 146 147 148 149 150 151 152 153 154 155
      std::memcpy(&out_data[i * dim], &in_data[starts[i] * dim],
                  dim * sizeof(T));
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
          }
        }
      }
    }
  }
};
156
template <typename T>
D
dzhwinter 已提交
157
class MaxSeqPoolGradFunctor {
158
 public:
Q
QI JUN 已提交
159
  void operator()(const platform::CPUDeviceContext& context,
160
                  const framework::LoDTensor& out_grad,
161 162 163 164 165
                  const framework::Tensor& index,
                  framework::LoDTensor* in_grad) {
    auto og_dims = out_grad.dims();
    auto ig_dims = in_grad->dims();
    auto idx_dims = index.dims();
166
    PADDLE_ENFORCE_GT(og_dims.size(), 1,
167 168 169 170
                      platform::errors::InvalidArgument(
                          "The rank of output@Grad shall be greater than 1, "
                          "but got %ld <= 1. Please check the input value.",
                          og_dims.size()));
171
    PADDLE_ENFORCE_GT(ig_dims.size(), 1,
172 173 174 175
                      platform::errors::InvalidArgument(
                          "The rank of input@Grad shall be greater than 1, but "
                          "got %ld <= 1. Please check the input value.",
                          ig_dims.size()));
D
dangqingqing 已提交
176
    for (int64_t i = 1; i < og_dims.size(); ++i) {
177 178 179 180 181 182
      PADDLE_ENFORCE_EQ(og_dims[i], ig_dims[i],
                        platform::errors::InvalidArgument(
                            "The dimension of input@Grad and output@Grad shall "
                            "be same. Expected %ld == %ld, but got %ld != %ld. "
                            "Please check the input value.",
                            og_dims[i], ig_dims[i], og_dims[i], ig_dims[i]));
183
    }
184 185 186 187 188 189
    PADDLE_ENFORCE_EQ(
        idx_dims, og_dims,
        platform::errors::InvalidArgument(
            "The dimension of index and output@Grad shall be same. Expected "
            "%ld == %ld, but got %ld != %ld. Please check the input value.",
            idx_dims, og_dims, idx_dims, og_dims));
190 191 192 193 194

    const T* og_data = out_grad.data<T>();
    const int* max_index = index.data<int>();
    T* ig_data = in_grad->data<T>();

195
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> set_zero;
196 197 198
    set_zero(context, in_grad, static_cast<T>(0.0));
    int64_t num_seq = og_dims[0];
    int64_t dim = out_grad.numel() / num_seq;
D
dangqingqing 已提交
199 200
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t j = 0; j < dim; ++j) {
201
        int step_id = max_index[i * dim + j];
202
        if (step_id == -1) continue;
203 204 205 206 207 208
        ig_data[step_id * dim + j] = og_data[i * dim + j];
      }
    }
  }
};

209
template <typename T>
B
bingyanghuang 已提交
210
class LastSeqPoolFunctor {
211 212
 public:
  void operator()(const platform::CPUDeviceContext& context,
213
                  const framework::LoDTensor& input, T pad_value,
214
                  framework::LoDTensor* output) {
B
bingyanghuang 已提交
215 216 217
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();
B
bingyanghuang 已提交
218

B
bingyanghuang 已提交
219 220
    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
221 222
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
B
bingyanghuang 已提交
223
    int seq_num = static_cast<int>(lod.size()) - 1;
B
bingyanghuang 已提交
224 225 226
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
227 228 229 230 231 232 233 234 235 236
      if (seq_len == 0) {
        for (int j = 0; j < item_size; ++j) {
          out_data[j] = pad_value;
        }
      } else {
        // Point to the begin of next sequence
        in_data += seq_len * item_size;
        // Copy the last item of sequence to output
        std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
      }
B
bingyanghuang 已提交
237
      out_data += item_size;
B
bingyanghuang 已提交
238
    }
B
bingyanghuang 已提交
239 240 241 242 243 244 245
  }
};

template <typename T>
class FirstSeqPoolFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
246
                  const framework::LoDTensor& input, T pad_value,
247
                  framework::LoDTensor* output) {
B
bingyanghuang 已提交
248 249 250 251 252 253
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();

    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
254 255
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
B
bingyanghuang 已提交
256 257 258 259
    int seq_num = static_cast<int>(lod.size()) - 1;
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
260 261 262 263 264 265 266 267 268 269
      if (seq_len == 0) {
        for (int j = 0; j < item_size; ++j) {
          out_data[j] = pad_value;
        }
      } else {
        // Copy the first item of sequence to output
        std::memcpy(out_data, in_data, item_size * sizeof(T));
        // Point to the next sequence
        in_data += seq_len * item_size;
      }
B
bingyanghuang 已提交
270
      out_data += item_size;
B
bingyanghuang 已提交
271
    }
B
bingyanghuang 已提交
272
  }
273 274
};

M
minqiyang 已提交
275 276 277 278
template <typename T>
class SumSeqPoolGradFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
279
                  const framework::LoDTensor& out_grad,
M
minqiyang 已提交
280
                  framework::LoDTensor* in_grad) {
281 282
    auto lod_level = in_grad->lod().size();
    auto lod = in_grad->lod()[lod_level - 1];
M
minqiyang 已提交
283 284
    int64_t out_w = out_grad.numel() / out_grad.dims()[0];
    int64_t in_w = in_grad->numel() / in_grad->dims()[0];
285 286 287 288 289 290
    PADDLE_ENFORCE_EQ(in_w, out_w,
                      platform::errors::InvalidArgument(
                          "The feature size of input@Grad and output@Grad "
                          "shall be same. Expected %ld == %ld, but got %ld != "
                          "%ld. Please check the input value.",
                          in_w, out_w, in_w, out_w));
M
minqiyang 已提交
291 292
    const T* out_g_data = out_grad.data<T>();
    T* in_g_data = in_grad->mutable_data<T>(context.GetPlace());
293
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
M
minqiyang 已提交
294 295
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
296
      if (h == 0) continue;
M
minqiyang 已提交
297 298 299 300 301 302 303 304 305 306
      int64_t in_offset = lod[i] * in_w;
      const T* out_pos = out_g_data + i * out_w;
      T* in_pos = in_g_data + in_offset;
      for (int r = 0; r != h; ++r) {
        blas.VCOPY(in_w, out_pos, in_pos + r * in_w);
      }
    }
  }
};

D
dzhwinter 已提交
307 308 309 310 311
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
 public:
  /* max pool has index output */
  void operator()(const platform::CPUDeviceContext& context,
312
                  const std::string pooltype, T pad_value,
313 314 315
                  const framework::LoDTensor& input,
                  framework::LoDTensor* output, bool is_test,
                  framework::Tensor* index = nullptr) {
D
dzhwinter 已提交
316
    if (pooltype == "MAX") {
J
Jacek Czaja 已提交
317 318
      if (is_test) {
        math::MaxSeqPoolFunctor<T, true> max_pool;
319
        max_pool(context, input, pad_value, output, index);
J
Jacek Czaja 已提交
320 321
      } else {
        math::MaxSeqPoolFunctor<T, false> max_pool;
322
        max_pool(context, input, pad_value, output, index);
J
Jacek Czaja 已提交
323
      }
D
dzhwinter 已提交
324 325
      return;
    }
B
bingyanghuang 已提交
326 327
    if (pooltype == "LAST") {
      math::LastSeqPoolFunctor<T> last_pool;
328
      last_pool(context, input, pad_value, output);
329 330
      return;
    }
B
bingyanghuang 已提交
331 332
    if (pooltype == "FIRST") {
      math::FirstSeqPoolFunctor<T> first_pool;
333
      first_pool(context, input, pad_value, output);
B
bingyanghuang 已提交
334 335
      return;
    }
336 337
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
T
tensor-tang 已提交
338 339
    if (pooltype == "SUM") {
      auto place = context.GetPlace();
340 341
      PADDLE_ENFORCE_EQ(
          platform::is_cpu_place(place), true,
342 343
          platform::errors::InvalidArgument(
              "Sequence_pool should run on CPU Device when pooltype is SUM"));
T
tensor-tang 已提交
344 345
      const T* src = input.data<T>();
      T* dst = output->mutable_data<T>(place);
T
tensor-tang 已提交
346 347 348
      jit::seq_pool_attr_t attr(
          static_cast<int>(input.numel() / input.dims()[0]),
          jit::SeqPoolType::kSum);
349 350 351
      auto seqpool =
          jit::KernelFuncs<jit::SeqPoolTuple<T>, platform::CPUPlace>::Cache()
              .At(attr);
T
tensor-tang 已提交
352 353
      for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
        attr.h = static_cast<int>(lod[i + 1] - lod[i]);
354 355 356 357 358 359 360
        if (attr.h == 0) {
          for (int j = 0; j < attr.w; ++j) {
            dst[j] = pad_value;
          }
        } else {
          seqpool(src, dst, &attr);
        }
T
tensor-tang 已提交
361 362 363 364 365
        dst += attr.w;
        src += attr.h * attr.w;
      }
      return;
    }
D
dzhwinter 已提交
366 367
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
368 369 370 371 372 373 374 375
      Tensor out_t = output->Slice(i, i + 1);
      int64_t w = input.numel() / input.dims()[0];
      if (lod[i] == lod[i + 1]) {
        for (int j = 0; j < w; ++j) {
          out_t.data<T>()[j] = pad_value;
        }
        continue;
      }
D
dzhwinter 已提交
376 377 378
      Tensor in_t =
          input.Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
379
      auto in_e = EigenMatrix<T>::From(in_t, phi::make_ddim({h, w}));
D
dzhwinter 已提交
380 381 382 383 384 385 386
      auto out_e = EigenVector<T>::Flatten(out_t);
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else {
387 388 389 390
        PADDLE_THROW(platform::errors::InvalidArgument(
            "unsupported pooling pooltype: %s. Only support \"AVERAGE\" and "
            "\"SQRT\"",
            pooltype));
D
dzhwinter 已提交
391 392 393 394 395 396 397 398 399
      }
    }
  }
};

template <typename T>
class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
400 401
                  const std::string pooltype,
                  const framework::LoDTensor& out_grad,
D
dzhwinter 已提交
402 403 404 405 406 407 408 409 410 411 412
                  framework::LoDTensor* in_grad,
                  /* max pool has index */
                  const framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolGradFunctor<T> max_pool_grad;
      max_pool_grad(context, out_grad, *index, in_grad);
      return;
    }

    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
413
      phi::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
D
dzhwinter 已提交
414 415
      functor(context, in_grad, 0);
    }
M
minqiyang 已提交
416 417

    if (pooltype == "SUM") {
M
minqiyang 已提交
418 419
      math::SumSeqPoolGradFunctor<T> sum_pool_grad;
      sum_pool_grad(context, out_grad, in_grad);
M
minqiyang 已提交
420 421 422
      return;
    }

423 424
    auto lod_level = in_grad->lod().size();
    auto lod = in_grad->lod()[lod_level - 1];
D
dzhwinter 已提交
425 426
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
427
      if (lod[i] == lod[i + 1]) continue;
D
dzhwinter 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
      auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
      auto out_g_t = out_grad.Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = in_grad->numel() / in_grad->dims()[0];
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
      Eigen::DSizes<int, 2> bcast(h, 1);

      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
      } else {
448 449 450 451
        PADDLE_THROW(platform::errors::InvalidArgument(
            "unsupported pooling pooltype: %s. Only support \"AVERAGE\", "
            "\"SQRT\", \"LAST\" and \"FIRST\"",
            pooltype));
D
dzhwinter 已提交
452 453 454 455 456 457 458 459 460
      }
    }
  }
};

template class SequencePoolFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolFunctor<platform::CPUDeviceContext, double>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, double>;
461 462 463 464

}  // namespace math
}  // namespace operators
}  // namespace paddle