test_elementwise_sub_op.py 7.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
C
chentianyu03 已提交
18
import paddle
19
from op_test import OpTest, skip_check_grad_ci
G
gongweibao 已提交
20 21 22 23 24 25


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
26 27
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64")
G
gongweibao 已提交
28 29 30 31 32 33 34
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
35
        self.check_grad(['X', 'Y'], 'Out')
G
gongweibao 已提交
36 37 38 39 40 41 42 43 44 45

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))


46 47
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
48 49 50 51
class TestElementwiseSubOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
52 53
            'X': np.random.rand(10, 3, 4).astype(np.float64),
            'Y': np.random.rand(1).astype(np.float64)
54 55 56 57
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


G
gongweibao 已提交
58 59 60 61
class TestElementwiseSubOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
62 63
            'X': np.random.random((100, )).astype("float64"),
            'Y': np.random.random((100, )).astype("float64")
G
gongweibao 已提交
64 65 66 67 68 69 70 71
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
72 73
            'X': np.random.rand(100, 3, 2).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
74 75 76 77
        }

        self.attrs = {'axis': 0}
        self.outputs = {
78
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
79 80 81 82 83 84 85
        }


class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
86 87
            'X': np.random.rand(2, 100, 3).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
88 89 90 91
        }

        self.attrs = {'axis': 1}
        self.outputs = {
92
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
93 94 95 96 97 98 99
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
100 101
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
102 103 104
        }

        self.outputs = {
105
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
106 107 108 109 110 111 112
        }


class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
113 114
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
            'Y': np.random.rand(10, 12).astype(np.float64)
G
gongweibao 已提交
115 116 117 118
        }

        self.attrs = {'axis': 1}
        self.outputs = {
119
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
120 121 122
        }


123 124 125 126
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
127 128
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64)
129 130 131 132
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


133 134 135 136
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
137 138
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(1, 1, 100).astype(np.float64)
139 140 141 142 143 144 145 146
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
147 148
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64)
149 150 151 152 153 154 155 156
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
157 158
            'X': np.random.rand(10, 12).astype(np.float64),
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64)
159 160 161 162 163
        }

        self.attrs = {'axis': 2}

        self.outputs = {
164
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
165 166 167
        }


C
chentianyu03 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
class TestComplexElementwiseSubOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x - self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones(
            self.shape, self.dtype)
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x - self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones(
            self.shape, self.dtype)
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out


G
gongweibao 已提交
240
if __name__ == '__main__':
C
chentianyu03 已提交
241
    paddle.enable_static()
G
gongweibao 已提交
242
    unittest.main()