# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle from op_test import OpTest, skip_check_grad_ci class TestElementwiseOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64") } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast.") class TestElementwiseSubOp_scalar(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 3, 4).astype(np.float64), 'Y': np.random.rand(1).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_Vector(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.random((100, )).astype("float64"), 'Y': np.random.random((100, )).astype("float64") } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_broadcast_0(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(100, 3, 2).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64) } self.attrs = {'axis': 0} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1) } class TestElementwiseSubOp_broadcast_1(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 100, 3).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64) } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1) } class TestElementwiseSubOp_broadcast_2(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64) } self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100) } class TestElementwiseSubOp_broadcast_3(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 10, 12, 3).astype(np.float64), 'Y': np.random.rand(10, 12).astype(np.float64) } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1) } class TestElementwiseSubOp_broadcast_4(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 5, 3, 12).astype(np.float64), 'Y': np.random.rand(2, 5, 1, 12).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_commonuse_1(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(1, 1, 100).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_commonuse_2(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 3, 1, 4).astype(np.float64), 'Y': np.random.rand(10, 1, 12, 1).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 12).astype(np.float64), 'Y': np.random.rand(2, 3, 10, 12).astype(np.float64) } self.attrs = {'axis': 2} self.outputs = { 'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y'] } class TestComplexElementwiseSubOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.dtype = np.float64 self.shape = (2, 3, 4, 5) self.init_input_output() self.init_grad_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) } self.attrs = {'axis': -1, 'use_mkldnn': False} self.outputs = {'Out': self.out} def init_base_dtype(self): self.dtype = np.float64 def init_input_output(self): self.x = np.random.random(self.shape).astype( self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype) self.y = np.random.random(self.shape).astype( self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype) self.out = self.x - self.y def init_grad_input_output(self): self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones( self.shape, self.dtype) self.grad_x = self.grad_out self.grad_y = -self.grad_out def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.grad_x, self.grad_y], user_defined_grad_outputs=[self.grad_out]) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.grad_y], user_defined_grad_outputs=[self.grad_out]) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.grad_x], user_defined_grad_outputs=[self.grad_out]) class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp): def init_input_output(self): self.x = np.random.random(self.shape).astype(self.dtype) self.y = np.random.random(self.shape).astype( self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype) self.out = self.x - self.y def init_grad_input_output(self): self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones( self.shape, self.dtype) self.grad_x = np.real(self.grad_out) self.grad_y = -self.grad_out if __name__ == '__main__': paddle.enable_static() unittest.main()