matmul_v2_op.cc 7.8 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
#include <string>
#include <vector>

namespace paddle {
namespace operators {

class MatMulV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
    bool trans_x = ctx->Attrs().Get<bool>("trans_x");
    bool trans_y = ctx->Attrs().Get<bool>("trans_y");

    std::vector<int64_t> dims_x =
        paddle::framework::vectorize(ctx->GetInputDim("X"));
    std::vector<int64_t> dims_y =
        paddle::framework::vectorize(ctx->GetInputDim("Y"));
    auto ndims_x = dims_x.size();
    auto ndims_y = dims_y.size();

    bool x_broadcasted = false, y_broadcasted = false;
    if (ndims_x == 1) {
      dims_x.insert(dims_x.begin(), 1);
      ndims_x = 2;
      x_broadcasted = true;
    }

    if (ndims_y == 1) {
      dims_y.push_back(1);
      ndims_y = 2;
      y_broadcasted = true;
    }

    size_t M, N;
    if (trans_x) {
      M = dims_x[ndims_x - 1];
    } else {
      M = dims_x[ndims_x - 2];
    }
    if (trans_y) {
      N = dims_y[ndims_y - 2];
    } else {
      N = dims_y[ndims_y - 1];
    }

    std::vector<int64_t> new_dims;
    if (ndims_x >= ndims_y) {
      new_dims.assign(dims_x.begin(), dims_x.end() - 2);
    } else {
      new_dims.assign(dims_y.begin(), dims_y.end() - 2);
    }
    if (!x_broadcasted) {
      new_dims.push_back(M);
    }
    if (!y_broadcasted) {
      new_dims.push_back(N);
    }
    if (x_broadcasted && y_broadcasted) {
      new_dims.push_back(1);
    }

    auto out_dims = framework::make_ddim(new_dims);
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /* --> */ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
    return framework::OpKernelType(data_type, ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
S
ShenLiang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  }
};

class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "tensor of shape (d0, d1 ... M, K)");
    AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
    AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
    AddAttr<bool>("trans_x",
                  "Set true to transpose the last two dimensions of X before "
                  "doing multiplication")
        .SetDefault(false);
    AddAttr<bool>("trans_y",
                  "Set true to transpose the last two dimensions of Y before "
                  "doing multiplication")
        .SetDefault(false);
    AddComment(
        R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K), 
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)). 
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
  }
};

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "matmul_v2");
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
C
chentianyu03 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, out_grad_name),
        ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
S
ShenLiang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(matmul_v2, ops::MatMulV2Op, ops::MatMulV2OpMaker,
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad);

REGISTER_OP_CPU_KERNEL(
    matmul_v2, ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, float>,
205 206 207 208 209
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
                        paddle::platform::complex64>,
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
                        paddle::platform::complex128>);
S
ShenLiang 已提交
210 211 212 213

REGISTER_OP_CPU_KERNEL(
    matmul_v2_grad,
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, float>,
214 215 216 217 218
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
                            paddle::platform::complex64>,
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
                            paddle::platform::complex128>);