fused_feedforward_op.cu 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/matmul_v2_op.h"

#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class FusedFeedForwardKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const platform::CUDADeviceContext& ctx,
              const framework::Tensor& a, const framework::Tensor& b,
              framework::Tensor* c) const {
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
    auto mat_dim_a = math::CreateMatrixDescriptor(a_2d.dims(), 0, false);
    auto mat_dim_b = math::CreateMatrixDescriptor(b_2d.dims(), 0, false);
    T alpha = static_cast<T>(1.0);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0));
  }

  void FFN(const framework::Tensor& x, const framework::Tensor& linear1_weight,
           const framework::Tensor* linear1_bias,
           const framework::Tensor& linear2_weight,
           const framework::Tensor* linear2_bias,
           const framework::Tensor* ln1_scale,
           const framework::Tensor* ln1_bias,
           const framework::Tensor* ln2_scale,
           const framework::Tensor* ln2_bias, framework::Tensor* out,
           framework::Tensor* dropout1_mask, framework::Tensor* dropout2_mask,
           framework::Tensor* ln1_mean, framework::Tensor* ln1_variance,
           framework::Tensor* ln2_mean, framework::Tensor* ln2_variance,
           framework::Tensor* linear1_out, framework::Tensor* ln1_out,
           framework::Tensor* dropout1_out, framework::Tensor* dropout2_out,
           const int bsz_seq, const int d_model, const int dim_feedforward,
           const std::string& act_method, const bool pre_layer_norm,
           const float epsilon1, const float epsilon2,
           const DropoutParam& dropout_param1,
           const DropoutParam& dropout_param2,
           const platform::CUDADeviceContext& ctx) const {
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const framework::Tensor* in = &x;

    const U* ln1_scale_ptr =
        ln1_scale == nullptr ? nullptr : ln1_scale->data<U>();
    const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data<U>();
    const U* ln2_scale_ptr =
        ln2_scale == nullptr ? nullptr : ln2_scale->data<U>();
    const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    const T* linear2_bias_ptr =
        linear2_bias == nullptr ? nullptr : linear2_bias->data<T>();

    if (pre_layer_norm) {
      pre_layernorm_helper.LayerNorm(
          ctx, x.data<T>(), ln1_scale_ptr, ln1_bias_ptr, ln1_out->data<T>(),
          ln1_mean->data<U>(), ln1_variance->data<U>());
      in = ln1_out;
    }
    MatMul(ctx, *in, linear1_weight, linear1_out);
    fused_act_dropout_helper.DropoutActBias(
        ctx, linear1_out->data<T>(), linear1_bias_ptr, act_method,
        dropout1_out->data<T>(), dropout1_mask->data<uint8_t>());
    framework::Tensor linear2_out;
    linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out);
    if (!pre_layer_norm) {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
          ctx, linear2_out.data<T>(), x.data<T>(), linear2_bias_ptr,
          ln2_scale_ptr, ln2_bias_ptr, dropout2_out->data<T>(),
          dropout2_mask->data<uint8_t>(), out->data<T>(), ln2_mean->data<U>(),
          ln2_variance->data<U>());
    } else {
      fused_dropout_layernorm_helper.ResidualDropoutBias(
          ctx, linear2_out.data<T>(), x.data<T>(), linear2_bias_ptr,
          out->data<T>(), dropout2_mask->data<uint8_t>());
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* linear1_weight = context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto* linear2_weight = context.Input<framework::Tensor>("Linear2Weight");
    auto* linear2_bias = context.Input<framework::Tensor>("Linear2Bias");
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");

    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;

    auto* ln1_mean =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln2_mean = !pre_layer_norm
                         ? context.Output<framework::Tensor>("Ln2Mean")
                         : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Output<framework::Tensor>("Ln2Variance")
                             : nullptr;
139 140 141 142
    auto* out = context.Output<framework::Tensor>("Out");
    auto* dropout1_mask = context.Output<framework::Tensor>("Dropout1Mask");
    auto* dropout2_mask = context.Output<framework::Tensor>("Dropout2Mask");
    auto* linear1_out = context.Output<framework::Tensor>("Linear1Out");
143 144
    auto* ln1_out =
        pre_layer_norm ? context.Output<framework::Tensor>("Ln1Out") : nullptr;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    auto* dropout1_out = context.Output<framework::Tensor>("Dropout1Out");
    auto* dropout2_out = context.Output<framework::Tensor>("Dropout2Out");

    const std::string act_method = context.Attr<std::string>("act_method");

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");

    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    using U = LayerNormParamType<T>;
    auto place = context.GetPlace();
    out->mutable_data<T>(place);
    dropout1_mask->mutable_data<uint8_t>(place);
    dropout2_mask->mutable_data<uint8_t>(place);
161 162 163 164 165 166 167 168 169
    if (pre_layer_norm) {
      ln1_mean->mutable_data<U>(place);
      ln1_variance->mutable_data<U>(place);
      ln1_out->mutable_data<T>(place);
    } else {
      ln2_mean->mutable_data<U>(place);
      ln2_variance->mutable_data<U>(place);
    }

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    linear1_out->mutable_data<T>(place);
    dropout1_out->mutable_data<T>(place);
    dropout2_out->mutable_data<T>(place);

    auto x_dim = x->dims();
    auto mat_dim_x =
        math::CreateMatrixDescriptor(RowMatrixFromVector(x_dim), 0, false);

    auto dim = linear1_weight->dims();
    int d_model = dim[0];
    int dim_feedforward = dim[dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

    FFN(*x, *linear1_weight, linear1_bias, *linear2_weight, linear2_bias,
        ln1_scale, ln1_bias, ln2_scale, ln2_bias, out, dropout1_mask,
        dropout2_mask, ln1_mean, ln1_variance, ln2_mean, ln2_variance,
        linear1_out, ln1_out, dropout1_out, dropout2_out, bsz_seq, d_model,
        dim_feedforward, act_method, pre_layer_norm, epsilon1, epsilon2,
        dropout_param1, dropout_param2, context.cuda_device_context());
  }
};

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
template <typename DeviceContext, typename T>
class FusedFeedForwardGradKernel : public framework::OpKernel<T> {
 public:
  void MatMulGrad(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor& d_out, const framework::Tensor& a,
                  const framework::Tensor& b, framework::Tensor* d_a,
                  framework::Tensor* d_b) const {
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
    auto mat_dim_a = math::CreateMatrixDescriptor(a_2d.dims(), 0, true);
    auto mat_dim_b = math::CreateMatrixDescriptor(b_2d.dims(), 0, true);
    auto mat_dim_dout = math::CreateMatrixDescriptor(d_out.dims(), 0, false);
    T alpha = static_cast<T>(1.0);
    blas.MatMul(d_out, mat_dim_dout, b, mat_dim_b, alpha, d_a, T(0));
    blas.MatMul(a, mat_dim_a, d_out, mat_dim_dout, alpha, d_b, T(0));
  }

  void FFNGrad(
      const framework::Tensor& d_out, const framework::Tensor& x,
      const framework::Tensor& dropout1_mask,
      const framework::Tensor& dropout2_mask,
214
      const framework::Tensor& linear1_out, const framework::Tensor* ln1_out,
215 216 217 218 219 220
      const framework::Tensor& dropout1_out,
      const framework::Tensor& dropout2_out,
      const framework::Tensor& linear1_weight,
      const framework::Tensor* linear1_bias,
      const framework::Tensor& linear2_weight,
      const framework::Tensor* ln1_gamma, const framework::Tensor* ln1_beta,
221
      const framework::Tensor* ln1_mean, const framework::Tensor* ln1_variance,
222
      const framework::Tensor* ln2_gamma, const framework::Tensor* ln2_beta,
223
      const framework::Tensor* ln2_mean, const framework::Tensor* ln2_variance,
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
      framework::Tensor* d_x, framework::Tensor* d_linear1_weight,
      framework::Tensor* d_linear1_bias, framework::Tensor* d_linear2_weight,
      framework::Tensor* d_linear2_bias, framework::Tensor* d_ln1_gamma,
      framework::Tensor* d_ln1_beta, framework::Tensor* d_ln2_gamma,
      framework::Tensor* d_ln2_beta, const int bsz_seq, const int d_model,
      const int dim_feedforward, const DropoutParam& dropout_param1,
      const DropoutParam& dropout_param2, const std::string& act_method,
      const bool pre_layer_norm, const float epsilon1, const float epsilon2,
      const platform::CUDADeviceContext& ctx) const {
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    auto place = ctx.GetPlace();
    using U = LayerNormParamType<T>;
    const U* ln1_gamma_ptr =
        ln1_gamma == nullptr ? nullptr : ln1_gamma->data<U>();
    const U* ln1_beta_ptr = ln1_beta == nullptr ? nullptr : ln1_beta->data<U>();
    const U* ln2_gamma_ptr =
        ln2_gamma == nullptr ? nullptr : ln2_gamma->data<U>();
    const U* ln2_beta_ptr = ln2_beta == nullptr ? nullptr : ln2_beta->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    T* d_linear1_bias_ptr =
        d_linear1_bias == nullptr ? nullptr : d_linear1_bias->data<T>();
    T* d_linear2_bias_ptr =
        d_linear2_bias == nullptr ? nullptr : d_linear2_bias->data<T>();
    U* d_ln1_gamma_ptr =
        d_ln1_gamma == nullptr ? nullptr : d_ln1_gamma->data<U>();
    U* d_ln1_beta_ptr = d_ln1_beta == nullptr ? nullptr : d_ln1_beta->data<U>();
    U* d_ln2_gamma_ptr =
        d_ln2_gamma == nullptr ? nullptr : d_ln2_gamma->data<U>();
    U* d_ln2_beta_ptr = d_ln2_beta == nullptr ? nullptr : d_ln2_beta->data<U>();

    framework::Tensor d_linear2_out, d_dropout2_out, d_residual;
    d_linear2_out.mutable_data<T>({bsz_seq, d_model}, place);
    d_dropout2_out.mutable_data<T>({bsz_seq, d_model}, place);
    d_residual.mutable_data<T>({bsz_seq, d_model}, place);

    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
          ctx, d_out.data<T>(), dropout2_mask.data<uint8_t>(),
          d_linear2_out.data<T>(), d_residual.data<T>(), d_linear2_bias_ptr);
    } else {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
          ctx, d_out.data<T>(), dropout2_out.data<T>(),
273 274
          dropout2_mask.data<uint8_t>(), ln2_gamma_ptr, ln2_mean->data<U>(),
          ln2_variance->data<U>(), d_dropout2_out.data<T>(), d_ln2_gamma_ptr,
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
          d_ln2_beta_ptr, d_linear2_out.data<T>(), d_linear2_bias_ptr,
          d_residual.data<T>());
    }

    framework::Tensor d_dropout1_out;
    d_dropout1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
    MatMulGrad(ctx, d_linear2_out, dropout1_out, linear2_weight,
               &d_dropout1_out, d_linear2_weight);

    framework::Tensor d_linear1_out;
    d_linear1_out.mutable_data<T>({bsz_seq, dim_feedforward}, place);
    fused_act_dropout_helper.DropoutActBiasGrad(
        ctx, d_dropout1_out.data<T>(), linear1_out.data<T>(), linear1_bias_ptr,
        dropout1_mask.data<uint8_t>(), d_linear1_out.data<T>(),
        d_linear1_bias_ptr, act_method);

    if (pre_layer_norm) {
      framework::Tensor d_ln1_out;
      d_ln1_out.mutable_data<T>({bsz_seq, d_model}, place);
294
      MatMulGrad(ctx, d_linear1_out, *ln1_out, linear1_weight, &d_ln1_out,
295 296
                 d_linear1_weight);

297 298 299 300
      pre_layernorm_helper.LayerNormGrad(
          ctx, d_ln1_out.data<T>(), x.data<T>(), ln1_gamma_ptr,
          ln1_mean->data<U>(), ln1_variance->data<U>(), d_x->data<T>(),
          d_ln1_gamma_ptr, d_ln1_beta_ptr);
301 302 303 304 305 306 307 308 309 310
    } else {
      MatMulGrad(ctx, d_linear1_out, x, linear1_weight, d_x, d_linear1_weight);
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    using U = LayerNormParamType<T>;
    auto d_out =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto x = *context.Input<framework::Tensor>("X");
311
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
312 313 314
    auto dropout1_mask = *context.Input<framework::Tensor>("Dropout1Mask");
    auto dropout2_mask = *context.Input<framework::Tensor>("Dropout2Mask");
    auto linear1_out = *context.Input<framework::Tensor>("Linear1Out");
315 316
    auto* ln1_out =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Out") : nullptr;
317 318 319 320 321
    auto dropout1_out = *context.Input<framework::Tensor>("Dropout1Out");
    auto dropout2_out = *context.Input<framework::Tensor>("Dropout2Out");
    auto linear1_weight = *context.Input<framework::Tensor>("Linear1Weight");
    auto* linear1_bias = context.Input<framework::Tensor>("Linear1Bias");
    auto linear2_weight = *context.Input<framework::Tensor>("Linear2Weight");
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    auto* ln1_mean =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Mean") : nullptr;
    auto* ln1_variance = pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln1Variance")
                             : nullptr;
    auto* ln1_scale =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Scale") : nullptr;
    auto* ln1_bias =
        pre_layer_norm ? context.Input<framework::Tensor>("Ln1Bias") : nullptr;
    auto* ln2_mean =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Mean") : nullptr;
    auto* ln2_variance = !pre_layer_norm
                             ? context.Input<framework::Tensor>("Ln2Variance")
                             : nullptr;
    auto* ln2_scale = !pre_layer_norm
                          ? context.Input<framework::Tensor>("Ln2Scale")
                          : nullptr;
    auto* ln2_bias =
        !pre_layer_norm ? context.Input<framework::Tensor>("Ln2Bias") : nullptr;
341 342

    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
343 344 345 346 347 348 349 350
    auto* d_ln1_scale = pre_layer_norm
                            ? context.Output<framework::Tensor>(
                                  framework::GradVarName("Ln1Scale"))
                            : nullptr;
    auto* d_ln1_bias = pre_layer_norm
                           ? context.Output<framework::Tensor>(
                                 framework::GradVarName("Ln1Bias"))
                           : nullptr;
351
    auto* d_ln2_scale =
352 353
        pre_layer_norm ? nullptr : context.Output<framework::Tensor>(
                                       framework::GradVarName("Ln2Scale"));
354
    auto* d_ln2_bias =
355 356
        pre_layer_norm ? nullptr : context.Output<framework::Tensor>(
                                       framework::GradVarName("Ln2Bias"));
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    auto* d_linear1_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Weight"));
    auto* d_linear1_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear1Bias"));
    auto* d_linear2_weight = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Weight"));
    auto* d_linear2_bias = context.Output<framework::Tensor>(
        framework::GradVarName("Linear2Bias"));

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
    const std::string act_method = context.Attr<std::string>("act_method");
    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    auto place = context.GetPlace();
    d_x->mutable_data<T>(place);
    if (d_ln1_scale) {
      d_ln1_scale->mutable_data<U>(place);
    }
    if (d_ln1_bias) {
      d_ln1_bias->mutable_data<U>(place);
    }
    if (d_ln2_scale) {
      d_ln2_scale->mutable_data<U>(place);
    }
    if (d_ln2_bias) {
      d_ln2_bias->mutable_data<U>(place);
    }
    if (d_linear1_bias) {
      d_linear1_bias->mutable_data<T>(place);
    }
    if (d_linear2_bias) {
      d_linear2_bias->mutable_data<T>(place);
    }
    d_linear1_weight->mutable_data<T>(place);
    d_linear2_weight->mutable_data<T>(place);

    auto x_dim = x.dims();
    auto mat_dim_x =
        math::CreateMatrixDescriptor(RowMatrixFromVector(x_dim), 0, false);

    auto linear1_weight_dim = linear1_weight.dims();
    int d_model = linear1_weight_dim[0];
    int dim_feedforward = linear1_weight_dim[linear1_weight_dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

    FFNGrad(d_out, x, dropout1_mask, dropout2_mask, linear1_out, ln1_out,
            dropout1_out, dropout2_out, linear1_weight, linear1_bias,
            linear2_weight, ln1_scale, ln1_bias, ln1_mean, ln1_variance,
            ln2_scale, ln2_bias, ln2_mean, ln2_variance, d_x, d_linear1_weight,
            d_linear1_bias, d_linear2_weight, d_linear2_bias, d_ln1_scale,
            d_ln1_bias, d_ln2_scale, d_ln2_bias, bsz_seq, d_model,
            dim_feedforward, dropout_param1, dropout_param2, act_method,
            pre_layer_norm, epsilon1, epsilon2, context.cuda_device_context());
  }
};
414 415 416 417 418 419 420 421 422 423
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FusedFeedForwardKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::float16>);
424 425 426 427 428 429 430
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward_grad,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    double>,
    ops::FusedFeedForwardGradKernel<paddle::platform::CUDADeviceContext,
                                    paddle::platform::float16>);