dropout_op_npu.cc 7.3 KB
Newer Older
P
pangyoki 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
13
limitations under the License. */
P
pangyoki 已提交
14 15 16 17 18 19

#include <memory>
#include <string>

#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_op.h"
20
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
21
#include "paddle/pten/core/ddim.h"
P
pangyoki 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class DropoutNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* seed_tensor =
        ctx.HasInput("Seed") ? ctx.Input<Tensor>("Seed") : nullptr;
    auto* out = ctx.Output<Tensor>("Out");
    auto* mask = ctx.Output<Tensor>("Mask");

    auto dropout_prob = ctx.Attr<float>("dropout_prob");
    auto is_test = ctx.Attr<bool>("is_test");

    out->mutable_data<T>(ctx.GetPlace());

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (dropout_prob == 1.) {
      const auto& runner_zeros_out = NpuOpRunner("ZerosLike", {*out}, {*out});
      runner_zeros_out.Run(stream);
      mask->mutable_data<uint8_t>(ctx.GetPlace());
      const auto& runner_zeros_mask =
          NpuOpRunner("ZerosLike", {*mask}, {*mask});
      runner_zeros_mask.Run(stream);
      return;
    }

    // only achive the default `upscale_in_train` method
    if (!is_test) {
59 60
      Tensor tmp_x(x->dtype());
      Tensor tmp_out(out->dtype());
P
pangyoki 已提交
61 62 63 64 65
      tmp_x.ShareDataWith(*x);
      tmp_out.ShareDataWith(*out);
      if (x->dims().size() == 1) {
        // DropOutDoMask will get error result when input
        // is 1-D. Make it become 2-D.
66 67 68
        std::vector<int> vec_dim = pten::vectorize<int>(x->dims());
        tmp_x.Resize(pten::make_ddim({vec_dim[0], 1}));
        tmp_out.Resize(pten::make_ddim({vec_dim[0], 1}));
P
pangyoki 已提交
69 70 71 72 73 74 75
      }

      int seed = 0;
      int seed2 = 0;
      float keep_prob = 1. - dropout_prob;
      if (seed_tensor) {
        std::vector<int> seed_data;
76 77
        paddle::framework::TensorToVector(*seed_tensor, ctx.device_context(),
                                          &seed_data);
P
pangyoki 已提交
78 79 80 81 82
        seed = seed_data[0];
      } else {
        seed = ctx.Attr<bool>("fix_seed") ? ctx.Attr<int>("seed") : 0;
      }

83
      Tensor keep_prob_tensor(x->dtype());
P
pangyoki 已提交
84 85 86 87 88 89 90 91
      keep_prob_tensor.mutable_data<T>({1}, ctx.GetPlace());
      FillNpuTensorWithConstant<T>(&keep_prob_tensor,
                                   static_cast<T>(keep_prob));

      mask->mutable_data<uint8_t>(ctx.GetPlace());

      // mask used in `DropOutGenMask` NPU OP is different from
      // the output `Mask`.
92
      Tensor npu_mask(experimental::DataType::UINT8);
P
pangyoki 已提交
93
      uint32_t length = (x->numel() + 128 - 1) / 128 * 128;
94
      npu_mask.Resize(pten::make_ddim({length / 8}));
P
pangyoki 已提交
95 96 97 98 99 100 101 102
      npu_mask.mutable_data<uint8_t>(ctx.GetPlace());

      // TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
      // OP must be a scalar with shape[0]. At present, the shape
      // of the `prob` Tensor of this OP is forced to be set to 0
      // in `npu_op_runner.cc`, which needs to be optimized later.
      NpuOpRunner runner_gen_mask;
      runner_gen_mask.SetType("DropOutGenMask")
103
          .AddInput(pten::vectorize(tmp_out.dims()))
P
pangyoki 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
          .AddInput(keep_prob_tensor)
          .AddOutput(npu_mask)
          .AddAttr("seed", seed)
          .AddAttr("seed2", seed2);
      runner_gen_mask.Run(stream);

      NpuOpRunner runner_dropout;
      runner_dropout.SetType("DropOutDoMask")
          .AddInput(tmp_x)
          .AddInput(npu_mask)
          .AddInput(keep_prob_tensor)
          .AddOutput(tmp_out);
      runner_dropout.Run(stream);

      // cast `out` from float/float16 to bool
119
      Tensor cast_mask(experimental::DataType::BOOL);
P
pangyoki 已提交
120 121
      cast_mask.Resize(mask->dims());
      cast_mask.mutable_data<bool>(ctx.GetPlace());
122 123
      auto dst_dtype_bool =
          ConvertToNpuDtype(framework::TransToProtoVarType(cast_mask.dtype()));
P
pangyoki 已提交
124 125 126 127 128 129
      const auto& runner_cast_mask_bool =
          NpuOpRunner("Cast", {*out}, {cast_mask},
                      {{"dst_type", static_cast<int>(dst_dtype_bool)}});
      runner_cast_mask_bool.Run(stream);

      // cast cast_mask from bool to uint8
130 131
      auto dst_dtype_uint8 =
          ConvertToNpuDtype(framework::TransToProtoVarType(mask->dtype()));
P
pangyoki 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
      const auto& runner_cast_mask_uint8 =
          NpuOpRunner("Cast", {cast_mask}, {*mask},
                      {{"dst_type", static_cast<int>(dst_dtype_uint8)}});
      runner_cast_mask_uint8.Run(stream);
    } else {
      framework::TensorCopy(
          *x, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), out);
    }
  }
};

template <typename DeviceContext, typename T>
class DropoutGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = ctx.Input<Tensor>("Mask");

    auto dropout_prob = ctx.Attr<float>("dropout_prob");
    auto is_test = ctx.Attr<bool>("is_test");

    PADDLE_ENFORCE_EQ(is_test, false,
                      platform::errors::PreconditionNotMet(
                          "GradOp is only callable when is_test is false"));

    dx->mutable_data<T>(ctx.GetPlace());

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (dropout_prob == 1.) {
      const auto& runner_zeros = NpuOpRunner("ZerosLike", {*dx}, {*dx});
      runner_zeros.Run(stream);
      return;
    }

    // cast mask from uint8 to float32/float16
172
    Tensor cast_mask(dx->dtype());
P
pangyoki 已提交
173 174
    cast_mask.Resize(mask->dims());
    cast_mask.mutable_data<T>(ctx.GetPlace());
175 176
    auto dst_dtype =
        ConvertToNpuDtype(framework::TransToProtoVarType(dx->dtype()));
P
pangyoki 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    const auto& runner_cast_mask =
        NpuOpRunner("Cast", {*mask}, {cast_mask},
                    {{"dst_type", static_cast<int>(dst_dtype)}});
    runner_cast_mask.Run(stream);

    const auto& runner =
        NpuOpRunner("MaskedScale", {*dout, cast_mask}, {*dx},
                    {{"value", static_cast<float>(1. / (1 - dropout_prob))}});
    runner.Run(stream);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    dropout, ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    dropout_grad,
    ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext,
                              paddle::platform::float16>);