dropout_op_npu.cc 7.1 KB
Newer Older
P
pangyoki 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
13
limitations under the License. */
P
pangyoki 已提交
14 15 16 17 18 19 20

#include <memory>
#include <string>

#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_op.h"
21
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
P
pangyoki 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class DropoutNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* seed_tensor =
        ctx.HasInput("Seed") ? ctx.Input<Tensor>("Seed") : nullptr;
    auto* out = ctx.Output<Tensor>("Out");
    auto* mask = ctx.Output<Tensor>("Mask");

    auto dropout_prob = ctx.Attr<float>("dropout_prob");
    auto is_test = ctx.Attr<bool>("is_test");

    out->mutable_data<T>(ctx.GetPlace());

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (dropout_prob == 1.) {
      const auto& runner_zeros_out = NpuOpRunner("ZerosLike", {*out}, {*out});
      runner_zeros_out.Run(stream);
      mask->mutable_data<uint8_t>(ctx.GetPlace());
      const auto& runner_zeros_mask =
          NpuOpRunner("ZerosLike", {*mask}, {*mask});
      runner_zeros_mask.Run(stream);
      return;
    }

    // only achive the default `upscale_in_train` method
    if (!is_test) {
      Tensor tmp_x(x->type());
      Tensor tmp_out(out->type());
      tmp_x.ShareDataWith(*x);
      tmp_out.ShareDataWith(*out);
      if (x->dims().size() == 1) {
        // DropOutDoMask will get error result when input
        // is 1-D. Make it become 2-D.
        std::vector<int> vec_dim = framework::vectorize<int>(x->dims());
        tmp_x.Resize(framework::make_ddim({vec_dim[0], 1}));
        tmp_out.Resize(framework::make_ddim({vec_dim[0], 1}));
      }

      int seed = 0;
      int seed2 = 0;
      float keep_prob = 1. - dropout_prob;
      if (seed_tensor) {
        std::vector<int> seed_data;
        TensorToVector(*seed_tensor, ctx.device_context(), &seed_data);
        seed = seed_data[0];
      } else {
        seed = ctx.Attr<bool>("fix_seed") ? ctx.Attr<int>("seed") : 0;
      }

      Tensor keep_prob_tensor(x->type());
      keep_prob_tensor.mutable_data<T>({1}, ctx.GetPlace());
      FillNpuTensorWithConstant<T>(&keep_prob_tensor,
                                   static_cast<T>(keep_prob));

      mask->mutable_data<uint8_t>(ctx.GetPlace());

      // mask used in `DropOutGenMask` NPU OP is different from
      // the output `Mask`.
      Tensor npu_mask(framework::proto::VarType::UINT8);
      uint32_t length = (x->numel() + 128 - 1) / 128 * 128;
      npu_mask.Resize(framework::make_ddim({length / 8}));
      npu_mask.mutable_data<uint8_t>(ctx.GetPlace());

      // TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
      // OP must be a scalar with shape[0]. At present, the shape
      // of the `prob` Tensor of this OP is forced to be set to 0
      // in `npu_op_runner.cc`, which needs to be optimized later.
      NpuOpRunner runner_gen_mask;
      runner_gen_mask.SetType("DropOutGenMask")
          .AddInput(framework::vectorize(tmp_out.dims()))
          .AddInput(keep_prob_tensor)
          .AddOutput(npu_mask)
          .AddAttr("seed", seed)
          .AddAttr("seed2", seed2);
      runner_gen_mask.Run(stream);

      NpuOpRunner runner_dropout;
      runner_dropout.SetType("DropOutDoMask")
          .AddInput(tmp_x)
          .AddInput(npu_mask)
          .AddInput(keep_prob_tensor)
          .AddOutput(tmp_out);
      runner_dropout.Run(stream);

      // cast `out` from float/float16 to bool
      Tensor cast_mask(framework::proto::VarType::BOOL);
      cast_mask.Resize(mask->dims());
      cast_mask.mutable_data<bool>(ctx.GetPlace());
      auto dst_dtype_bool = ConvertToNpuDtype(cast_mask.type());
      const auto& runner_cast_mask_bool =
          NpuOpRunner("Cast", {*out}, {cast_mask},
                      {{"dst_type", static_cast<int>(dst_dtype_bool)}});
      runner_cast_mask_bool.Run(stream);

      // cast cast_mask from bool to uint8
      auto dst_dtype_uint8 = ConvertToNpuDtype(mask->type());
      const auto& runner_cast_mask_uint8 =
          NpuOpRunner("Cast", {cast_mask}, {*mask},
                      {{"dst_type", static_cast<int>(dst_dtype_uint8)}});
      runner_cast_mask_uint8.Run(stream);
    } else {
      framework::TensorCopy(
          *x, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), out);
    }
  }
};

template <typename DeviceContext, typename T>
class DropoutGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = ctx.Input<Tensor>("Mask");

    auto dropout_prob = ctx.Attr<float>("dropout_prob");
    auto is_test = ctx.Attr<bool>("is_test");

    PADDLE_ENFORCE_EQ(is_test, false,
                      platform::errors::PreconditionNotMet(
                          "GradOp is only callable when is_test is false"));

    dx->mutable_data<T>(ctx.GetPlace());

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (dropout_prob == 1.) {
      const auto& runner_zeros = NpuOpRunner("ZerosLike", {*dx}, {*dx});
      runner_zeros.Run(stream);
      return;
    }

    // cast mask from uint8 to float32/float16
    Tensor cast_mask(dx->type());
    cast_mask.Resize(mask->dims());
    cast_mask.mutable_data<T>(ctx.GetPlace());
    auto dst_dtype = ConvertToNpuDtype(dx->type());
    const auto& runner_cast_mask =
        NpuOpRunner("Cast", {*mask}, {cast_mask},
                    {{"dst_type", static_cast<int>(dst_dtype)}});
    runner_cast_mask.Run(stream);

    const auto& runner =
        NpuOpRunner("MaskedScale", {*dout, cast_mask}, {*dx},
                    {{"value", static_cast<float>(1. / (1 - dropout_prob))}});
    runner.Run(stream);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    dropout, ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    dropout_grad,
    ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext,
                              paddle::platform::float16>);