test_initializer.py 26.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import numpy as np
18 19
import unittest

20
import paddle
21
import paddle.fluid as fluid
22 23
import paddle.fluid.framework as framework
import paddle.fluid.initializer as initializer
24
from paddle.fluid.core import VarDesc
25

26 27
paddle.enable_static()

28 29 30
DELTA = 0.00001


31 32 33 34 35 36
def check_cast_op(op):
    return op.type == 'cast' and \
           op.attr('in_dtype') == VarDesc.VarType.FP32 and \
           op.attr('out_dtype') == VarDesc.VarType.FP16


37
class TestConstantInitializer(unittest.TestCase):
38
    def test_constant_initializer_default_value(self, dtype="float32"):
39 40 41 42
        """Test the constant initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
43 44
        for _ in range(2):
            block.create_parameter(
45
                dtype=dtype,
46 47 48 49
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.ConstantInitializer())
50 51
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
52 53 54
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 0.0, delta=DELTA)
55
        return block
56

57
    def test_constant_initializer(self, dtype="float32"):
58 59 60 61
        """Test constant initializer with supplied value
        """
        program = framework.Program()
        block = program.global_block()
62 63
        for _ in range(2):
            block.create_parameter(
64
                dtype=dtype,
65 66 67 68
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.ConstantInitializer(2.3))
69 70
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
71 72 73
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 2.3, delta=DELTA)
74 75 76 77 78 79 80 81 82
        return block

    def test_constant_initializer_fp16(self):
        """Test constant initializer with float16
        """
        block = self.test_constant_initializer_default_value("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_constant_initializer("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
83 84 85


class TestUniformInitializer(unittest.TestCase):
86
    def test_uniform_initializer_default_value(self, dtype="float32"):
87 88 89 90
        """Test the uniform initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
91 92
        for _ in range(2):
            block.create_parameter(
93
                dtype=dtype,
94 95 96 97
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer())
98 99
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
100 101 102 103 104
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)
105
        return block
106

D
dzhwinter 已提交
107 108 109 110 111 112
    def test_uniform_initializer_random_seed(self):
        """Test the uniform initializer with manually setting seed
        """
        program = framework.Program()
        program.random_seed = 123
        block = program.global_block()
113 114 115 116 117
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
Q
qiaolongfei 已提交
118
                name="param1",
119 120 121 122 123
                initializer=initializer.UniformInitializer())
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
Q
qiaolongfei 已提交
124
                name="param2",
125
                initializer=initializer.UniformInitializer(seed=456))
D
dzhwinter 已提交
126 127 128 129 130
        init_op = block.ops[1]
        self.assertEqual(init_op.attr("seed"), 123)
        init_op1 = block.ops[0]
        self.assertEqual(init_op1.attr("seed"), 456)

131
    def test_uniform_initializer(self, dtype="float32"):
132 133 134 135
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
136 137
        for _ in range(2):
            block.create_parameter(
138
                dtype=dtype,
139 140 141 142
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer(-4.2, 3.1, 123))
143 144
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
145 146 147 148 149
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -4.2, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 3.1, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)
150
        return block
151

152
    def test_uniform_initializer_two_op(self, dtype="float32"):
153 154 155 156 157 158
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
        for i in range(2):
            block.create_parameter(
159
                dtype=dtype,
160 161 162 163
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer(-4.2, float(i), 123))
164 165
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
166 167 168
        init_op0 = block.ops[0]
        self.assertEqual(init_op0.type, 'uniform_random')
        self.assertAlmostEqual(init_op0.attr('min'), -4.2, delta=DELTA)
Q
qiaolongfei 已提交
169
        self.assertAlmostEqual(init_op0.attr('max'), 0.0, delta=DELTA)
170
        self.assertEqual(init_op0.attr('seed'), 123)
171 172 173 174 175 176 177 178 179 180 181
        return block

    def test_uniform_initializer_fp16(self):
        """Test uniform initializer with float16
        """
        block = self.test_uniform_initializer_default_value("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_uniform_initializer(dtype="float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_uniform_initializer_two_op("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
182

183 184 185 186 187 188 189

class TestNormalInitializer(unittest.TestCase):
    def test_normal_initializer_default_value(self):
        """Test the normal initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
190 191 192 193 194 195 196
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.NormalInitializer())
197 198 199 200 201 202 203
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

204
    def test_normal_initializer(self, dtype="float32"):
205 206 207 208
        """Test normal initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
209 210
        for _ in range(2):
            block.create_parameter(
211
                dtype=dtype,
212 213 214 215
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.NormalInitializer(2.3, 1.9, 123))
216 217
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
218 219 220 221 222
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)
223 224 225 226 227 228 229
        return block

    def test_normal_initializer_fp16(self):
        """Test normal initializer with float16
        """
        block = self.test_normal_initializer("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
230 231


232 233 234 235 236 237 238
class TestXavierInitializer(unittest.TestCase):
    def test_uniform_xavier_initializer(self):
        """Test Xavier initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
239 240 241 242 243 244 245
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer())
246 247 248 249 250 251 252 253 254 255 256 257 258 259
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_xavier_initializer_conv(self):
        """Test Xavier initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
260 261 262 263 264 265 266
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer())
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer(self):
        """Test Xavier initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
283 284 285 286 287 288 289
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(uniform=False))
290 291 292 293 294 295 296 297 298 299 300 301 302 303
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer_conv(self):
        """Test Xavier initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
304 305 306 307 308 309 310
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(uniform=False))
311 312 313 314 315 316 317 318 319 320
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

321
    def test_xavier_initializer_supplied_arguments(self, dtype="float32"):
322 323 324 325
        """Test the Xavier initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
326 327
        for _ in range(2):
            block.create_parameter(
328
                dtype=dtype,
329 330 331 332 333
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(
                    fan_in=12, fan_out=23, seed=134))
334 335
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
336 337 338 339 340 341
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (12 + 23))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)
342 343 344 345 346 347 348
        return block

    def test_xavier_initializer_fp16(self):
        """Test the Xavier initializer with float16
        """
        block = self.test_xavier_initializer_supplied_arguments("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
349 350


351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
class TestXavierUniformInitializer(unittest.TestCase):
    def test_uniform_xavier_initializer(self):
        """Test Xavier initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierUniformInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_xavier_initializer_conv(self):
        """Test Xavier initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierUniformInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)


class TestXavierNormalInitializer(unittest.TestCase):
    def test_normal_xavier_initializer(self):
        """Test Xavier initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierNormalInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer_conv(self):
        """Test Xavier initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierNormalInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)


443 444 445 446 447 448 449
class TestMSRAInitializer(unittest.TestCase):
    def test_uniform_msra_initializer(self):
        """Test MSRA initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
450 451 452 453 454 455 456
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer())
457 458 459 460 461 462 463 464 465 466 467 468 469 470
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_msra_initializer_conv(self):
        """Test MSRA initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
471 472 473 474 475 476 477
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer())
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer(self):
        """Test MSRA initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
493 494 495 496 497 498 499
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(uniform=False))
500 501 502 503 504 505 506 507 508 509 510 511 512 513
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer_conv(self):
        """Test MSRA initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
514 515 516 517 518 519 520
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(uniform=False))
521 522 523 524 525 526 527 528 529
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

530
    def test_msra_initializer_supplied_arguments(self, dtype="float32"):
531 532 533 534
        """Test the MSRA initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
535 536
        for _ in range(2):
            block.create_parameter(
537
                dtype=dtype,
538 539 540 541 542
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(
                    fan_in=12, seed=134))
543 544
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
545 546 547 548 549 550
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / 12)
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)
551
        return block
552

553 554 555 556 557
    def test_msra_initializer_fp16(self):
        """Test the MSRA initializer with float16
        """
        block = self.test_msra_initializer_supplied_arguments("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
558

559 560 561

class TestBilinearInitializer(unittest.TestCase):
    def test_bilinear_initializer(self, dtype="float32"):
562 563 564 565
        """Test the bilinear initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
566 567
        for _ in range(2):
            block.create_parameter(
568
                dtype=dtype,
569 570 571 572
                shape=[8, 1, 3, 3],
                lod_level=0,
                name="param",
                initializer=initializer.BilinearInitializer())
573
        num_ops = 2 if dtype == "float16" or dtype == "float64" else 1
574
        self.assertEqual(len(block.ops), num_ops)
575 576
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')
577 578
        return block

579 580 581
    def test_bilinear_initializer_fp64(self):
        self.test_bilinear_initializer(dtype='float64')

582 583 584 585 586
    def test_bilinear_initializer_fp16(self):
        """Test the bilinear initializer with supplied arguments
        """
        block = self.test_bilinear_initializer("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
587

588 589 590
    def test_type_error(self):
        self.assertRaises(TypeError, self.test_bilinear_initializer, 'int32')

591

Q
Qiao Longfei 已提交
592
class TestNumpyArrayInitializer(unittest.TestCase):
593
    def test_numpy_array_initializer(self, dtype="float32"):
Q
Qiao Longfei 已提交
594 595 596 597 598
        """Test the numpy array initializer with supplied arguments
        """
        import numpy
        program = framework.Program()
        block = program.global_block()
599
        np_array = numpy.random.random((10000)).astype(dtype)
Q
Qiao Longfei 已提交
600 601 602 603 604 605 606
        for _ in range(2):
            block.create_parameter(
                dtype=np_array.dtype,
                shape=np_array.shape,
                lod_level=0,
                name="param",
                initializer=initializer.NumpyArrayInitializer(np_array))
607 608
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
Q
Qiao Longfei 已提交
609 610
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')
611
        assert (init_op.attr('fp32_values') == np_array).all()
612 613 614 615 616 617 618
        return block

    def test_numpy_array_initializer_fp16(self):
        """Test the numpy array initializer with float16
        """
        block = self.test_numpy_array_initializer("float16")
        self.assertTrue(block.ops[1])
Q
Qiao Longfei 已提交
619 620


621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
class TestSetGlobalInitializer(unittest.TestCase):
    def test_set_global_weight_initilizer(self):
        """Test Set Global Param initilizer with UniformInitializer
        """
        main_prog = framework.Program()
        startup_prog = framework.Program()
        fluid.set_global_initializer(initializer.Uniform(low=-0.5, high=0.5))
        with fluid.program_guard(main_prog, startup_prog):
            x = fluid.data(name="x", shape=[1, 3, 32, 32])
            # default initilizer of param in layers.conv2d is NormalInitializer
            conv = fluid.layers.conv2d(x, 5, 3)

        block = startup_prog.global_block()
        self.assertEqual(len(block.ops), 2)

        # init bias is the first op, and weight is the second
        bias_init_op = block.ops[0]
        self.assertEqual(bias_init_op.type, 'fill_constant')
        self.assertAlmostEqual(bias_init_op.attr('value'), 0.0, delta=DELTA)

        param_init_op = block.ops[1]
        self.assertEqual(param_init_op.type, 'uniform_random')
        self.assertAlmostEqual(param_init_op.attr('min'), -0.5, delta=DELTA)
        self.assertAlmostEqual(param_init_op.attr('max'), 0.5, delta=DELTA)
        self.assertEqual(param_init_op.attr('seed'), 0)
        fluid.set_global_initializer(None)

    def test_set_global_bias_initilizer(self):
        """Test Set Global Bias initilizer with NormalInitializer
        """
        main_prog = framework.Program()
        startup_prog = framework.Program()
        fluid.set_global_initializer(
            initializer.Uniform(
                low=-0.5, high=0.5),
            bias_init=initializer.Normal(
657
                mean=0.0, std=2.0))
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
        with fluid.program_guard(main_prog, startup_prog):
            x = fluid.data(name="x", shape=[1, 3, 32, 32])
            # default initilizer of bias in layers.conv2d is ConstantInitializer
            conv = fluid.layers.conv2d(x, 5, 3)

        block = startup_prog.global_block()
        self.assertEqual(len(block.ops), 2)

        # init bias is the first op, and weight is the second
        bias_init_op = block.ops[0]
        self.assertEqual(bias_init_op.type, 'gaussian_random')
        self.assertAlmostEqual(bias_init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(bias_init_op.attr('std'), 2.0, delta=DELTA)
        self.assertEqual(bias_init_op.attr('seed'), 0)

        param_init_op = block.ops[1]
        self.assertEqual(param_init_op.type, 'uniform_random')
        self.assertAlmostEqual(param_init_op.attr('min'), -0.5, delta=DELTA)
        self.assertAlmostEqual(param_init_op.attr('max'), 0.5, delta=DELTA)
        self.assertEqual(param_init_op.attr('seed'), 0)
        fluid.set_global_initializer(None)


681 682
if __name__ == '__main__':
    unittest.main()