test_initializer.py 17.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import numpy as np
18 19
import unittest

20 21
import paddle.fluid.framework as framework
import paddle.fluid.initializer as initializer
22 23 24 25 26 27 28 29 30 31

DELTA = 0.00001


class TestConstantInitializer(unittest.TestCase):
    def test_constant_initializer_default_value(self):
        """Test the constant initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
32 33 34 35 36 37 38
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.ConstantInitializer())
39 40 41 42 43 44 45 46 47 48
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 0.0, delta=DELTA)

    def test_constant_initializer(self):
        """Test constant initializer with supplied value
        """
        program = framework.Program()
        block = program.global_block()
49 50 51 52 53 54 55
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.ConstantInitializer(2.3))
56 57 58 59 60 61 62 63 64 65 66 67
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 2.3, delta=DELTA)


class TestUniformInitializer(unittest.TestCase):
    def test_uniform_initializer_default_value(self):
        """Test the uniform initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
68 69 70 71 72 73 74
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer())
75 76 77 78 79 80 81
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

D
dzhwinter 已提交
82 83 84 85 86 87
    def test_uniform_initializer_random_seed(self):
        """Test the uniform initializer with manually setting seed
        """
        program = framework.Program()
        program.random_seed = 123
        block = program.global_block()
88 89 90 91 92
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
Q
qiaolongfei 已提交
93
                name="param1",
94 95 96 97 98
                initializer=initializer.UniformInitializer())
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
Q
qiaolongfei 已提交
99
                name="param2",
100
                initializer=initializer.UniformInitializer(seed=456))
D
dzhwinter 已提交
101 102 103 104 105
        init_op = block.ops[1]
        self.assertEqual(init_op.attr("seed"), 123)
        init_op1 = block.ops[0]
        self.assertEqual(init_op1.attr("seed"), 456)

106 107 108 109 110
    def test_uniform_initializer(self):
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
111 112 113 114 115 116 117
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer(-4.2, 3.1, 123))
118 119 120 121 122 123 124
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -4.2, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 3.1, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)

125 126 127 128 129 130 131 132 133 134 135 136
    def test_uniform_initializer_two_op(self):
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
        for i in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer(-4.2, float(i), 123))
Q
qiaolongfei 已提交
137
        self.assertEqual(len(block.ops), 1)
138 139 140
        init_op0 = block.ops[0]
        self.assertEqual(init_op0.type, 'uniform_random')
        self.assertAlmostEqual(init_op0.attr('min'), -4.2, delta=DELTA)
Q
qiaolongfei 已提交
141
        self.assertAlmostEqual(init_op0.attr('max'), 0.0, delta=DELTA)
142 143
        self.assertEqual(init_op0.attr('seed'), 123)

144 145 146 147 148 149 150

class TestNormalInitializer(unittest.TestCase):
    def test_normal_initializer_default_value(self):
        """Test the normal initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
151 152 153 154 155 156 157
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.NormalInitializer())
158 159 160 161 162 163 164 165 166 167 168 169
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_initializer(self):
        """Test normal initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
170 171 172 173 174 175 176
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.NormalInitializer(2.3, 1.9, 123))
177 178 179 180 181 182 183 184
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)


185 186 187 188 189 190 191
class TestXavierInitializer(unittest.TestCase):
    def test_uniform_xavier_initializer(self):
        """Test Xavier initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
192 193 194 195 196 197 198
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer())
199 200 201 202 203 204 205 206 207 208 209 210 211 212
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_xavier_initializer_conv(self):
        """Test Xavier initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
213 214 215 216 217 218 219
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer())
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer(self):
        """Test Xavier initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
236 237 238 239 240 241 242
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(uniform=False))
243 244 245 246 247 248 249 250 251 252 253 254 255 256
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer_conv(self):
        """Test Xavier initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
257 258 259 260 261 262 263
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(uniform=False))
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_xavier_initializer_supplied_arguments(self):
        """Test the Xavier initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
279 280 281 282 283 284 285 286
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(
                    fan_in=12, fan_out=23, seed=134))
287 288 289 290 291 292 293 294 295
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (12 + 23))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)


296 297 298 299 300 301 302
class TestMSRAInitializer(unittest.TestCase):
    def test_uniform_msra_initializer(self):
        """Test MSRA initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
303 304 305 306 307 308 309
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer())
310 311 312 313 314 315 316 317 318 319 320 321 322 323
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_msra_initializer_conv(self):
        """Test MSRA initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
324 325 326 327 328 329 330
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer())
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer(self):
        """Test MSRA initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
346 347 348 349 350 351 352
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(uniform=False))
353 354 355 356 357 358 359 360 361 362 363 364 365 366
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer_conv(self):
        """Test MSRA initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
367 368 369 370 371 372 373
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(uniform=False))
374 375 376 377 378 379 380 381 382 383 384 385 386 387
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_msra_initializer_supplied_arguments(self):
        """Test the MSRA initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
388 389 390 391 392 393 394 395
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(
                    fan_in=12, seed=134))
396 397 398 399 400 401 402 403 404
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / 12)
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)


405 406 407 408 409 410
class TestMSRAInitializer(unittest.TestCase):
    def test_bilinear_initializer(self):
        """Test the bilinear initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
411 412 413 414 415 416 417
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[8, 1, 3, 3],
                lod_level=0,
                name="param",
                initializer=initializer.BilinearInitializer())
418 419 420 421 422
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')


Q
Qiao Longfei 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
class TestNumpyArrayInitializer(unittest.TestCase):
    def test_numpy_array_initializer(self):
        """Test the numpy array initializer with supplied arguments
        """
        import numpy
        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            np_array = numpy.array([1, 2, 3, 4]).astype('float32')
            block.create_parameter(
                dtype=np_array.dtype,
                shape=np_array.shape,
                lod_level=0,
                name="param",
                initializer=initializer.NumpyArrayInitializer(np_array))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')


443 444
if __name__ == '__main__':
    unittest.main()