quantization_pass.py 25.1 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import Program
W
WangZhen 已提交
21 22 23
from ....initializer import Constant
from .... import unique_name

24 25 26 27
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
    'TransformForMobilePass'
]
W
WangZhen 已提交
28

W
WangZhen 已提交
29

30
class QuantizationTransformPass(object):
W
WangZhen 已提交
31
    def __init__(self,
32 33
                 scope=None,
                 program_exe=None,
W
WangZhen 已提交
34 35 36 37 38 39
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000):
        """
40
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        activation quantization type.
        Args:
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
                now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
                the quantization scale will be calculated dynamically each step
                in both training and testing period. If use 'range_abs_max',
                a static quantization scale will be calculated during training
                and used in inference.
            weight_quantize_type (str): quantization type for weights,
                support 'abs_max'. The 'range_abs_max' usually is not used for
                weight, since weights are fixed once the model is well trained.
            window_size (int): the window size for 'range_abs_max' quantization.
        Examples:
        .. code-block:: python
58 59 60 61
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
62
            from paddle.fluid.contrib.slim.graph import IrGraph
63 64
            from paddle.fluid import core

65
            graph = IrGraph(core.Graph(program.desc), for_test=False)
66 67 68 69
            exe = fluid.Executor(fluid.CPUPlace())
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
            exe)
            transform_pass.apply(graph)
W
WangZhen 已提交
70
        """
71 72 73 74
        self._scope = scope
        self._program_exe = program_exe
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
75 76 77 78 79 80 81 82 83 84 85

        quant_type = ['abs_max', 'range_abs_max']
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(activation_quantize_type))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(weight_quantize_type))

86 87 88
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
W
WangZhen 已提交
89

90 91 92 93
        self._need_initialized = collections.OrderedDict()
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
94
        ]
95 96
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
97

98
    def apply(self, graph):
W
WangZhen 已提交
99
        assert isinstance(graph,
100 101 102
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._need_initialized.clear()
        self._is_test = graph.is_test()
W
WangZhen 已提交
103 104
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
W
WangZhen 已提交
105
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
W
WangZhen 已提交
106 107 108 109 110 111

        def _transform_forward(graph, op):
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
112
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
113 114
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
115
                        in persistable_vars else self._activation_quantize_type
W
WangZhen 已提交
116 117 118 119 120
                    quant_var_node, scale_var_node = self._insert_quant_op(
                        graph, var_node, quant_bits, quant_type)
                    dequant_var_node = self._insert_dequant_op(
                        graph, quant_var_node, scale_var_node, quant_bits)
                    dequantized_vars[var_node.name()] = dequant_var_node
121
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
122 123 124 125 126 127

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
128
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
129 130 131 132
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
133

134
        if not self._is_test:
W
WangZhen 已提交
135 136
            self._create_global_step(graph)
        ops = graph.all_ops()
W
WangZhen 已提交
137 138
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
139
        for op in ops:
140
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
141
                _transform_forward(graph, op)
W
WangZhen 已提交
142 143
        # The loop for renaming the inputs of backward op.
        for op in ops:
144
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
145
                _transform_backward(graph, op)
W
WangZhen 已提交
146

147 148
        if len(self._need_initialized) > 0:
            assert self._scope is not None, \
149
            'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
150
            assert self._program_exe is not None, \
151 152
            'The program_exe cannot be set None when activation_quantize_type equals to range_abs_max.'
            init_program = Program()
153
            for var_desc, initializer in self._need_initialized.iteritems():
W
WangZhen 已提交
154 155 156 157 158 159 160
                var = init_program.global_block().create_var(
                    name=var_desc.name(),
                    shape=var_desc.shape(),
                    dtype=var_desc.dtype(),
                    type=var_desc.type(),
                    lod_level=var_desc.lod_level(),
                    persistable=var_desc.persistable())
161
                initializer(var, init_program.global_block())
162
            self._program_exe.run(program=init_program, scope=self._scope)
163 164

        return graph
W
WangZhen 已提交
165

W
WangZhen 已提交
166
    def _create_global_step(self, graph):
167 168
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
169
            counter_name = cpt.to_text('@STEP_COUNTER@')
W
WangZhen 已提交
170 171
            for node in graph.all_vars():
                if node.name() == counter_name:
172 173
                    self._global_step = node
            if self._global_step is None:
W
WangZhen 已提交
174 175 176 177 178
                global_step_in = graph.create_param_node(
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
179
                self._need_initialized[global_step_in.var()] = \
W
WangZhen 已提交
180 181 182 183 184 185 186 187
                    Constant(value=0, force_cpu=True)
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
                increment_op = graph.create_op_node(
                    op_type='increment',
                    attrs={'step': 1.0},
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
188 189 190
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
191

W
WangZhen 已提交
192 193 194 195 196 197 198
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
199 200
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
W
WangZhen 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
            attrs={'bit_length': quant_bits},
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
224 225 226
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())

        scale_in_node = graph.create_param_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.var().dtype())
246
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)
W
WangZhen 已提交
247 248 249 250 251

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

252
        if not self._is_test:
W
WangZhen 已提交
253 254 255 256
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
            scales_node = graph.create_param_node(
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
257
                shape=[self._window_size],
W
WangZhen 已提交
258
                var_dtype=var_node.var().dtype())
259 260
            self._need_initialized[scales_node.var()] = Constant(value=0)
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
261 262
            outputs['OutScales'] = scales_node
        attrs = {
263
            'window_size': self._window_size,
W
WangZhen 已提交
264
            'bit_length': quant_bits,
265
            'is_test': self._is_test
W
WangZhen 已提交
266 267 268 269 270 271 272
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

273 274 275 276
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
277

278 279 280
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

        return quant_var_node, scale_out_node

    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
            attrs={'max_range': float(max_range)},
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
302 303 304
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
321
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
322 323
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373


class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
        ops = graph.all_ops()
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
                input_arg_name = op_node.op().input('X')[0]
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
                    else:
                        scale_v = self._load_var(op_node.op().output('OutScale')
                                                 [0])[0]
                    self._var_scale_map[input_arg_name] = scale_v
                else:
                    scale_v = graph.var_node(op_node.op().output('OutScale')[0])
                    self._var_scale_map[input_arg_name] = scale_v
                if input_arg_name in persistable_vars:
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
374
                                                    self._weight_bits)
W
WangZhen 已提交
375 376
                    self._restore_var(input_arg_name, quantized_param_v)

W
WangZhen 已提交
377
        ops = graph.all_ops()
W
WangZhen 已提交
378 379 380 381 382
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

W
WangZhen 已提交
383
        ops = graph.all_ops()
W
WangZhen 已提交
384 385 386 387 388 389 390 391 392 393 394
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                self._insert_post_dequant_op(graph, op_node)

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
                name = var_node.name()
                if name in self._op_output_rename_map:
                    old_in = graph.var_node(name)
W
WangZhen 已提交
395
                    new_in = self._op_output_rename_map[name]
W
WangZhen 已提交
396 397 398 399
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
400
        return graph
W
WangZhen 已提交
401 402 403 404 405 406 407 408

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
        k = op_node.op().output('Out')[0]
        v = op_node.op().input('X')[0]
        if v not in self._op_input_rename_map:
            self._op_input_rename_map[k] = v
        else:
            self._op_input_rename_map[k] = self._op_input_rename_map[v]
W
WangZhen 已提交
409
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
410 411 412 413 414

    def _insert_post_dequant_op(self, graph, op_node):
        max_range = None
        scale_var_node = None
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
W
WangZhen 已提交
415
        for var_node in op_node.inputs:
W
WangZhen 已提交
416 417 418 419
            name = var_node.name()
            if name in self._op_input_rename_map:
                old_in = graph.var_node(name)
                new_in = graph.var_node(self._op_input_rename_map[name])
W
WangZhen 已提交
420
                new_in.clear_outputs()
W
WangZhen 已提交
421 422
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
423
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
424 425 426 427 428 429 430 431 432 433 434
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
                assert isinstance(scale_v, core.Node)
                scale_var_node = self._var_scale_map[original_var_name]

W
WangZhen 已提交
435
        if len(op_node.outputs) != 1:
W
WangZhen 已提交
436 437 438
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

W
WangZhen 已提交
439
        output_var_node = op_node.outputs[0]
W
WangZhen 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.var().type(),
            shape=output_var_node.var().shape(),
            var_dtype=output_var_node.var().dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
            attrs={'max_range': float(max_range)},
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
454
        self._op_output_rename_map[output_var_node.name()] = dequant_var_node
W
WangZhen 已提交
455 456 457 458 459
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

460 461 462
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_ops()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_unused_vars = graph.all_vars() - all_used_vars
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
497
    def _is_float(self, v):
W
WangZhen 已提交
498 499 500
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
501
    def _quant(self, x, scale, num_bits):
W
WangZhen 已提交
502
        return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596


class ConvertToInt8Pass(object):
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']

    def apply(self, graph):
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
        ops = graph.all_ops()
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
        int8_var_node = graph.create_param_node(
            name=cpt.to_text(int8_var_node_name),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_ops()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_unused_vars = graph.all_vars() - all_used_vars
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']

    def apply(self, graph):
        ops = graph.all_ops()
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
                op_node.op().set_type('quantize')
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
                op_node.op().set_type('dequantize')
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)

        return graph