flags.cc 42.5 KB
Newer Older
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2
// Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

16
#include "paddle/phi/core/flags.h"
17
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
18
#include "paddle/phi/backends/gpu/cuda/cudnn_workspace_helper.h"
19 20
#endif

21
namespace phi {
Z
Zeng Jinle 已提交
22 23 24 25 26 27 28 29 30 31

const ExportedFlagInfoMap &GetExportedFlagInfoMap() {
  return *GetMutableExportedFlagInfoMap();
}

ExportedFlagInfoMap *GetMutableExportedFlagInfoMap() {
  static ExportedFlagInfoMap g_exported_flag_info_map;
  return &g_exported_flag_info_map;
}

32
}  // namespace phi
Z
Zeng Jinle 已提交
33

34 35
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism,
                             0,
36 37
                             "number of threads for inner op");

38 39 40 41
/**
 * NOTE(paddle-dev): This file is designed to define all public FLAGS.
 */

42 43 44 45 46 47 48 49 50
/**
 * Paddle initialization related FLAG
 * Name: FLAGS_paddle_num_threads
 * Since Version: 0.15.0
 * Value Range: int32, default=1
 * Example: FLAGS_paddle_num_threads=2, set the maximum thread number per
 * instance to 2
 * Note:
 */
51 52
PADDLE_DEFINE_EXPORTED_int32(paddle_num_threads,
                             1,
Z
Zeng Jinle 已提交
53
                             "Number of threads for each paddle instance.");
54

55 56 57
/**
 * Low Precision Op related FLAG
 * Name: FLAGS_low_precision_op_list
58 59
 * Since Version: 2.5.0
 * Value Range: int32, default=0
60 61
 * Example:
 * Note: Used to debug. Get the low precision op list of current module.
62 63 64
 * FLAGS_check_nan_inf is set.
 * - 1, return the low precision op list of current module.
 * - 2, return the op list of current module.
65
 */
66 67 68 69 70
PADDLE_DEFINE_EXPORTED_int32(low_precision_op_list,
                             0,
                             "Setting the level of low precision op"
                             "list printing. It will be return the "
                             "low precision op list of current module.");
71

72 73 74 75 76 77 78 79
/**
 * Operator related FLAG
 * Name: FLAGS_check_nan_inf
 * Since Version: 0.13.0
 * Value Range: bool, default=false
 * Example:
 * Note: Used to debug. Checking whether operator produce NAN/INF or not.
 */
Z
Zeng Jinle 已提交
80
PADDLE_DEFINE_EXPORTED_bool(
81 82
    check_nan_inf,
    false,
Z
Zeng Jinle 已提交
83 84
    "Checking whether operator produce NAN/INF or not. It will be "
    "extremely slow so please use this flag wisely.");
85

86 87
/**
 * Operator related FLAG
88
 * Name: FLAGS_check_nan_inf_level
89
 * Since Version: 2.5.0
90
 * Value Range: int32, default=0
91
 * Example:
92 93 94 95 96 97 98 99 100
 * Note: Used to debug. Setting the check and print level when
 * FLAGS_check_nan_inf is set.
 * - 0, abort the process when any operator produce NAN/INF and only print the
 * information of tensor which holds NAN/INF.
 * - 1, continue the training or inference process and print the information of
 * all tensors which holds NAN/INF.
 * - 2, print the information of float tensors when the max or min value
 * overflowing float16's limit.
 * - 3, print the information of all tensors.
101
 */
102 103 104 105
PADDLE_DEFINE_EXPORTED_int32(
    check_nan_inf_level,
    0,
    "Setting the check and print level when FLAGS_check_nan_inf is set.");
106

D
danleifeng 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120
/**
 * Operator related FLAG
 * Name: FLAGS_check_nan_inf
 * Since Version: 0.13.0
 * Value Range: bool, default=false
 * Example:
 * Note: Used to debug. Checking whether operator produce NAN/INF or not.
 */
PADDLE_DEFINE_EXPORTED_bool(
    enable_opt_get_features,
    false,
    "Checking whether operator produce NAN/INF or not. It will be "
    "extremely slow so please use this flag wisely.");

121 122 123 124
// NOTE(zhiqiu): better to share the flags, otherwise we will have too many
// flags.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_ASCEND_CL)
125 126 127 128 129 130 131 132 133

/**
 * CUDA related related FLAG
 * Name: FLAGS_enable_cublas_tensor_op_math
 * Since Version: 1.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: whether to use Tensor Core, faster but it may loss precision.
 */
Z
Zeng Jinle 已提交
134
PADDLE_DEFINE_EXPORTED_bool(
135 136
    enable_cublas_tensor_op_math,
    false,
137 138 139 140 141 142 143 144
    "The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
    "but it may loss precision. Currently, There are two CUDA libraries that"
    " use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
    " GEMM computations(the matrices must be either half precision or single "
    "precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
    "input and output must be half precision) and recurrent neural networks "
    "(RNNs).");

145 146 147 148
/**
 * CUDA related related FLAG
 * Name: FLAGS_gemm_use_half_precision_compute_type
 * Since Version: 2.4
149
 * Value Range: bool, default=false
150 151 152 153 154
 * Example:
 * Note: whether to use fp16 compute type when the input and output is fp16,
 * faster but it may loss precision.
 */
PADDLE_DEFINE_EXPORTED_bool(
155
    gemm_use_half_precision_compute_type,
156
    false,
157 158
    "Whether to use fp16 compute type when the input and output is fp16, "
    "faster but it may loss precision in most case. If true, the compute "
159
    "type will be set to fp16. Default is false.");
160

161 162 163 164 165 166 167 168 169
/**
 * CUDA related FLAG
 * Name: FLAGS_selected_gpus
 * Since Version: 1.3.0
 * Value Range: integer list separated by comma, default empty list
 * Example: FLAGS_selected_gpus=0,1,2,3,4,5,6,7 to train or predict with 0~7 gpu
 * cards
 * Note: A list of device ids separated by comma, like: 0,1,2,3
 */
Z
Zeng Jinle 已提交
170
PADDLE_DEFINE_EXPORTED_string(
171 172
    selected_gpus,
    "",
Z
Zeng Jinle 已提交
173 174 175 176 177 178 179
    "A list of device ids separated by comma, like: 0,1,2,3. "
    "This option is useful when doing multi process training and "
    "each process have only one device (GPU). If you want to use "
    "all visible devices, set this to empty string. NOTE: the "
    "reason of doing this is that we want to use P2P communication"
    "between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
    "share-memory only.");
180 181
#endif

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
#if defined(PADDLE_WITH_CUDA)
/**
 * CUDA related FLAG
 * Name: FLAGS_cublaslt_exhaustive_search_times
 * Since Version: 2.3.0
 * Value Range: int64_t, default=0
 * Example:
 * Note: Represents times of exhaustive search to evaluate performance of
 *       cuBlasLt matmul algorithm (with/without epilogue). Set this flag
 *       with value > 0 to enable exhaustive search. Default is 0, means
 *       getting algorithms via heuristic search. There are two search methods
 *       in cuBlasLt, heuristic search and exhaustive search. Exhaustive search
 *       attempts all cuBlasLt algorithms to select the fastest, which is very
 *       time-consuming, and the selected algorithm will be cached for a given
 *       layer specification Once you change the layer specifications
 *       (such as M, N and K), it will re-search again.
 */
PADDLE_DEFINE_EXPORTED_int64(
200 201
    cublaslt_exhaustive_search_times,
    0,
202 203 204 205
    "The times of exhaustive search for cuBlasLt matmul with/without "
    " epilogue algorithms, default is 0, means disabling exhaustive search.");
#endif

206
#if defined(PADDLE_WITH_ASCEND_CL)
Z
Zeng Jinle 已提交
207
PADDLE_DEFINE_EXPORTED_string(
208 209
    selected_npus,
    "",
Z
Zeng Jinle 已提交
210 211 212 213 214
    "A list of device ids separated by comma, like: 0,1,2,3. "
    "This option is useful when doing multi process training and "
    "each process have only one device (NPU). If you want to use "
    "all visible devices, set this to empty string.");
PADDLE_DEFINE_EXPORTED_bool(
215 216
    hccl_check_nan,
    true,
Z
Zeng Jinle 已提交
217 218 219
    "Check Nan in tensor before hccl_allreduce_sum otherwise it'll "
    "core when meets Nan value");
PADDLE_DEFINE_EXPORTED_string(
220 221
    npu_config_path,
    "",
222 223
    "The absolute path of configuration json file, like: /tmp/config.json. "
    "If proveided, it will be passed to aclInit().");
224 225
PADDLE_DEFINE_EXPORTED_int32(min_loss_scaling,
                             1,
Z
Zeng Jinle 已提交
226
                             "set minmum loss scaling value!");
A
Aganlengzi 已提交
227
PADDLE_DEFINE_EXPORTED_string(
228 229
    npu_precision_mode,
    "",
A
Aganlengzi 已提交
230 231 232 233 234
    "NPU operator precision mode, options are 'force_fp32', 'force_fp16', "
    "'allow_fp32_to_fp16', 'must_keep_origin_dtype' and "
    "'allow_mix_precision'. If you want to use the default mode ("
    "allow_fp32_to_fp16), set this to empty string. For more details, "
    "please refer to the documents");
235
#endif
236

237 238 239 240 241 242 243 244 245 246 247 248 249
/*
 * Kernel related FLAG
 * Name: FLAGS_enable_api_kernel_fallback
 * Since Version: 2.4
 * Value Range: bool, default=true
 * Example: FLAGS_enable_api_kernel_fallback=true would allow kernel of current
 * backend fallback to CPU one when not found
 */
PADDLE_DEFINE_EXPORTED_bool(
    enable_api_kernel_fallback,
    true,
    "Whether enable api kernel fallback to CPU one when not found");

250
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
251 252 253 254 255 256 257 258 259
/**
 * CUDNN related FLAG
 * Name: FLAGS_cudnn_deterministic
 * Since Version: 0.13.0
 * Value Range: bool, default=false
 * Example:
 * Note: whether to use deterministic algorithm in cudnn.
 *       If true, it will slow down some operators such as conv and pooling.
 */
Z
Zeng Jinle 已提交
260
PADDLE_DEFINE_EXPORTED_bool(
261 262
    cudnn_deterministic,
    false,
Z
Zeng Jinle 已提交
263 264 265
    "Whether allow using an autotuning algorithm for convolution "
    "operator. The autotuning algorithm may be non-deterministic. If "
    "true, the algorithm is deterministic.");
266

267 268 269 270
/**
 * CUDNN related FLAG
 * Name: FLAGS_conv_workspace_size_limit
 * Since Version: 0.13.0
271
 * Value Range: uint64, default=512 (MB)
272 273 274 275 276 277 278
 * Example:
 * Note: The internal function of cuDNN obtains the fastest matching algorithm
 *       within this memory limit. Usually, faster algorithms can be chosen in
 *       larger workspaces, but memory space can also be significantly
 * increased.
 *       Users need to balance memory and speed.
 */
279 280 281 282
PADDLE_DEFINE_EXPORTED_int64(
    conv_workspace_size_limit,
    phi::backends::gpu::kDefaultConvWorkspaceSizeLimitMB,
    "cuDNN convolution workspace limit in MB unit.");
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297
/**
 * CUDNN related FLAG
 * Name: FLAGS_cudnn_exhaustive_search
 * Since Version: 1.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: Represents whether an exhaustive search method is used to
 *       select a convolution algorithm. There are two search methods in cuDNN,
 *       heuristic search and exhaustive search. Exhaustive search attempts
 *       all cuDNN algorithms to select the fastest. This method is very
 *       time-consuming, and the selected algorithm will be cached for a given
 *       layer specification. Once you change the layer specifications
 *       (such as batch size, feature map size), it will search again.
 */
Z
Zeng Jinle 已提交
298
PADDLE_DEFINE_EXPORTED_bool(
299 300
    cudnn_exhaustive_search,
    false,
Z
Zeng Jinle 已提交
301 302
    "Whether enable exhaustive search for cuDNN convolution or "
    "not, default is False.");
303

304 305 306 307 308 309 310 311
/**
 * CUDNN related FLAG
 * Name: FLAGS_cudnn_exhaustive_search_times
 * Since Version:
 * Value Range:
 * Example:
 * Note: only used to predict for advanced developer
 */
312 313
PADDLE_DEFINE_EXPORTED_int64(cudnn_exhaustive_search_times,
                             -1,
Z
Zeng Jinle 已提交
314 315
                             "Exhaustive search times for cuDNN convolution, "
                             "default is -1, not exhaustive search");
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/**
 * CUDNN related FLAG
 * Name: FLAGS_cudnn_batchnorm_spatial_persistent
 * Since Version: 1.4.0
 * Value Range: bool, default=false
 * Example:
 * Note: CUDNN_BATCHNORM_SPATIAL_PERSISTENT in batchnorm. This mode can be
 * faster in
 *       some tasks because an optimized path may be selected for
 * CUDNN_DATA_FLOAT
 *       and CUDNN_DATA_HALF data types, compute capability 6.0 or higher. The
 *       reason we set it to false by default is that this mode may use scaled
 *       atomic integer reduction that may cause a numerical overflow for
 * certain
 *       input data range.
 */
Z
Zeng Jinle 已提交
333
PADDLE_DEFINE_EXPORTED_bool(
334 335
    cudnn_batchnorm_spatial_persistent,
    false,
Z
Zeng Jinle 已提交
336 337
    "Whether enable CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode for cudnn "
    "batch_norm, default is False.");
338 339
#endif

340
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
341 342 343

/**
 * NCCL related FLAG
344 345 346
 * Name: FLAGS_sync_nccl_allreduce
 * Since Version: 1.3
 * Value Range: bool, default=true
347 348 349 350 351
 * Example:
 * Note: asynchronous nccl allreduce or synchronous issue:
 *       https://github.com/PaddlePaddle/Paddle/issues/15049
 *       If you want to change this default value, why?(gongwb)
 */
Z
Zeng Jinle 已提交
352
PADDLE_DEFINE_EXPORTED_bool(
353 354
    sync_nccl_allreduce,
    true,
355 356 357 358 359
    "If set true, will call `cudaStreamSynchronize(nccl_stream)`"
    "after allreduce, this mode can get better performance in some scenarios.");
#endif

#ifdef PADDLE_WITH_DISTRIBUTE
360 361 362 363 364 365 366 367 368 369 370
/**
 * Distributed related FLAG
 * Name: FLAGS_communicator_max_merge_var_num
 * Since Version: 1.5.0
 * Value Range: int32, default=20
 * Example:
 * Note: The maximum number of gradients to be merged into a gradient and
 *       sent through the communicator. The trainer puts all the gradients
 *       into the queue, and then the communicator takes the gradients out
 *       of the queue and sends them after merging.
 */
371 372
PADDLE_DEFINE_EXPORTED_int32(communicator_max_merge_var_num,
                             20,
Z
Zeng Jinle 已提交
373 374
                             "max var num to merge and send");
PADDLE_DEFINE_EXPORTED_bool(
375 376
    communicator_is_sgd_optimizer,
    true,
Z
Zeng Jinle 已提交
377 378
    "gradient sent to the server is the sum of the gradients "
    "calculated by each thread if optimizer is sgd");
379 380 381 382 383 384 385 386 387 388 389 390 391
/**
 * Distributed related FLAG
 * Name: FLAGS_communicator_send_queue_size
 * Since Version: 1.5.0
 * Value Range: int32, default=20
 * Example:
 * Note: Size for each gradient queue. The trainer puts the gradient into
 *       the queue, and then the communicator takes it out of the queue and
 *       sends it out. When the communicator is slow, the queue may be full,
 *       and the trainer will be continuously blocked before the queue has
 *       space. It is used to avoid training much faster than communication,
 *       so that too many gradients are not sent out in time.
 */
392 393
PADDLE_DEFINE_EXPORTED_int32(communicator_send_queue_size,
                             20,
Z
Zeng Jinle 已提交
394
                             "queue size to recv gradient before send");
395 396
#endif

397 398 399 400 401 402 403 404 405
/**
 * Distributed related FLAG
 * Name: FLAGS_dist_threadpool_size
 * Since Version: 1.0.0
 * Value Range: int32, default=0
 * Example:
 * Note: Control the number of threads used for distributed modules.
 *       If it is not set, it is set to a hard thread.
 */
Z
Zeng Jinle 已提交
406
PADDLE_DEFINE_EXPORTED_int32(
407 408
    dist_threadpool_size,
    0,
Z
Zeng Jinle 已提交
409
    "number of threads used for distributed executed.");
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/**
 * Garbage collector related FLAG
 * Name: FLAGS_eager_delete_tensor_gb
 * Since Version: 1.0.0
 * Value Range: double, default=kDefaultEagerDeleteTensorGB
 * Example: FLAGS_eager_delete_tensor_gb=0.0, Release memory garbage once it is
 * no longer used.
 *          FLAGS_eager_delete_tensor_gb=1.0, Release memory garbage when
 * garbage occupies 1.0GB of memory.
 *          FLAGS_eager_delete_tensor_gb=-1.0, Disable garbage collection
 * policy.
 * Note: Represents whether a garbage collection strategy is used to optimize
 * network memory usage.
 *       It is recommended that users set FLAGS_eager_delete_tensor_gb=0.0 to
 *       enable garbage collection strategy when training large networks.
 */
427 428 429
// Disable gc by default when inference library is built
static const double kDefaultEagerDeleteTensorGB = 0;

Z
Zeng Jinle 已提交
430
PADDLE_DEFINE_EXPORTED_double(
431 432
    eager_delete_tensor_gb,
    kDefaultEagerDeleteTensorGB,
433 434 435
    "Memory size threshold (GB) when the garbage collector clear tensors."
    "Disabled when this value is less than 0");

436 437 438 439 440 441 442 443 444 445 446 447
/**
 * Memory related FLAG
 * Name: FLAGS_fast_eager_deletion_mode
 * Since Version: 1.3.0
 * Value Range: bool, default=true
 * Example:
 * Note: Whether to use fast garbage collection strategy.
 *       If not set, the GPU memory is released at the end of the CUDA kernel.
 *       Otherwise, the GPU memory will be released before the CUDA kernel
 *       has finished, which will make the garbage collection strategy faster.
 *       Only works when garbage collection strategy is enabled.
 */
Z
Zeng Jinle 已提交
448
PADDLE_DEFINE_EXPORTED_bool(
449 450
    fast_eager_deletion_mode,
    true,
Z
Zeng Jinle 已提交
451 452
    "Fast eager deletion mode. If enabled, memory would release "
    "immediately without waiting GPU kernel ends.");
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * Memory related FLAG
 * Name: FLAGS_memory_fraction_of_eager_deletion
 * Since Version: 1.4
 * Value Range: double [0.0, 1.0], default=1.0
 * Example:
 * Note: The percentage of memory size of garbage collection policy
 *       to release variables.
 *       If FLAGS_memory_fraction_of_eager_deletion = 1.0,
 *       all temporary variables in the network will be released.
 *       If FLAGS_memory_fraction_of_eager_deletion = 0.0,
 *       no temporary variables in the network are released.
 *       If 0.0 < FLAGS_memory_fraction_of_eager_deletion < 1.0,
 *       all temporary variables will be sorted in descending order
 *       according to their memory size, and only variables with the
 *       largest FLAGS_memory_fraction_of_eager_deletion ratio will be released.
 *       The flag is only valid when running parallel data compilers.
 */
Z
Zeng Jinle 已提交
472
PADDLE_DEFINE_EXPORTED_double(
473 474
    memory_fraction_of_eager_deletion,
    1.0,
Z
Zeng Jinle 已提交
475 476 477 478
    "Fraction of eager deletion. If less than 1.0, all variables in "
    "the program would be sorted according to its memory size, and "
    "only the FLAGS_memory_fraction_of_eager_deletion of the largest "
    "variables would be deleted.");
479

480 481 482 483
/**
 * Allocator related FLAG
 * Name: FLAGS_allocator_strategy
 * Since Version: 1.2
484 485
 * Value Range: string, {naive_best_fit, auto_growth, thread_local},
 * default=auto_growth
486
 * Example:
487
 * Note: For selecting allocator policy of PaddlePaddle.
488
 */
489
static constexpr char kDefaultAllocatorStrategy[] = "auto_growth";
Z
Zeng Jinle 已提交
490
PADDLE_DEFINE_EXPORTED_string(
491 492
    allocator_strategy,
    kDefaultAllocatorStrategy,
493 494 495 496 497 498 499 500 501 502 503
    "The allocation strategy, enum in [naive_best_fit, auto_growth]. "
    "naive_best_fit means the original pre-allocated allocator of Paddle. "
    "auto_growth means the auto-growth allocator. "
    "These two strategies differ in GPU memory allocation. "
    "naive_best_fit strategy would occupy almost all GPU memory by default, "
    "which prevents users from starting several Paddle jobs on the same GPU "
    "card but leads to less memory fragmentation (i.e., maximum batch "
    "size of models may be larger). auto_growth strategy would allocate "
    "GPU memory on demand, which allows users to start several Paddle jobs "
    "on the same GPU card but may lead to more memory fragmentation "
    "(i.e., maximum batch size of models may be smaller).");
504

505 506 507
/**
 * Memory related FLAG
 * Name: FLAGS_fraction_of_cpu_memory_to_use
508 509
 * Since Version: 0.12.0
 * Value Range: double, [0.0, 1.0], default=1
510
 * Example:
511 512 513 514 515 516
 * Note: Represents the proportion of allocated CPU memory blocks
 *       to the total memory size of the CPU. Future CPU memory usage
 *       will be allocated from this memory block. If the memory block does
 *       not have enough CUDA pinned memory, new memory blocks of the same
 *       size as the memory block will be allocated from the CUDA pinned
 *       request util the CPU does not have enough memory.
517
 */
518 519
PADDLE_DEFINE_EXPORTED_double(fraction_of_cpu_memory_to_use,
                              1,
Z
Zeng Jinle 已提交
520 521
                              "Default use 100% of CPU memory for PaddlePaddle,"
                              "reserve the rest for page tables, etc");
522 523 524 525 526 527 528 529 530 531 532 533 534

/**
 * Memory related FLAG
 * Name: FLAGS_initial_cpu_memory_in_mb
 * Since Version: 0.14.0
 * Value Range: uint64, default=500 (MB)
 * Example:
 * Note: The CPU memory block size of the initial allocator in MB.
 *       The allocator takes the minimum values of
 *       FLAGS_initial_cpu_memory_in_mb and
 *       FLAGS_fraction_of_cpu_memory_to_use*(total physical memory)
 *       as memory block sizes.
 */
Z
Zeng Jinle 已提交
535
PADDLE_DEFINE_EXPORTED_uint64(
536 537
    initial_cpu_memory_in_mb,
    500ul,
Z
Zeng Jinle 已提交
538
    "Initial CPU memory for PaddlePaddle, in MD unit.");
539

540 541 542
/**
 * Memory related FLAG
 * Name: FLAGS_fraction_of_cuda_pinned_memory_to_use
543 544
 * Since Version: 0.12.0
 * Value Range: double, [0.0, 1.0], default=0.5
545
 * Example:
546 547 548 549 550 551
 * Note: Represents the proportion of allocated CUDA pinned memory blocks
 *       to the total memory size of the CPU. Future CUDA pinned memory usage
 *       will be allocated from this memory block. If the memory block does
 *       not have enough CPU memory, new memory blocks of the same
 *       size as the memory block will be allocated from the CPU
 *       request util the CPU does not have enough memory.
552
 */
Z
Zeng Jinle 已提交
553
PADDLE_DEFINE_EXPORTED_double(
554 555
    fraction_of_cuda_pinned_memory_to_use,
    0.5,
556 557 558
    "Default use 50% of CPU memory as the pinned_memory for PaddlePaddle,"
    "reserve the rest for page tables, etc");

559 560
// NOTE(zhiqiu): better to share the flags, otherwise we will have too many
// flags.
561 562 563
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) ||      \
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU) || \
    defined(PADDLE_WITH_CUSTOM_DEVICE)
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

/**
 * Memory related FLAG
 * Name: FLAGS_fraction_of_gpu_memory_to_use
 * Since Version: 1.2.0
 * Value Range: double, default=0.5 if win32, 0.92 else
 * Example:
 * Note: Represents the proportion of allocated memory blocks to the total
 * memory size
 *       of the GPU. Future memory usage will be allocated from this memory
 * block.
 *       If the memory block does not have enough GPU memory, new memory blocks
 * of
 *       the same size as the memory block will be allocated from the GPU
 * request
 *       until the GPU does not have enough memory.
 */

582 583 584 585 586 587 588 589
#ifndef _WIN32
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
#endif
Z
Zeng Jinle 已提交
590
PADDLE_DEFINE_EXPORTED_double(
591 592
    fraction_of_gpu_memory_to_use,
    fraction_of_gpu_memory_to_use,
Z
Zeng Jinle 已提交
593 594 595 596 597
    "Allocate a trunk of gpu memory that is this fraction of the "
    "total gpu memory size. Future memory usage will be allocated "
    "from the trunk. If the trunk doesn't have enough gpu memory, "
    "additional trunks of the same size will be requested from gpu "
    "until the gpu has no memory left for another trunk.");
598

599 600 601 602 603 604 605 606 607 608 609 610
/**
 * Memory related FLAG
 * Name: FLAGS_initial_gpu_memory_in_mb
 * Since Version: 1.4.0
 * Value Range: uint64, default=0 (MB)
 * Example:
 * Note: Allocate a specified size of GPU memory block. Later memory usage
 *       will be allocated from that memory block. If the memory block does not
 *       have enough GPU memory, the memory block with the size
 *       FLAGS_reallocate_gpu_memory_in_mb will be requested from the GPU until
 *       the GPU has no remaining memory.
 */
Z
Zeng Jinle 已提交
611
PADDLE_DEFINE_EXPORTED_uint64(
612 613
    initial_gpu_memory_in_mb,
    0ul,
614 615 616 617 618 619 620 621 622 623 624
    "Allocate a trunk of gpu memory whose byte size is specified by "
    "the flag. Future memory usage will be allocated from the "
    "trunk. If the trunk doesn't have enough gpu memory, additional "
    "trunks of the gpu memory will be requested from gpu with size "
    "specified by FLAGS_reallocate_gpu_memory_in_mb until the gpu has "
    "no memory left for the additional trunk. Note: if you set this "
    "flag, the memory size set by "
    "FLAGS_fraction_of_gpu_memory_to_use will be overrided by this "
    "flag. If you don't set this flag, PaddlePaddle will use "
    "FLAGS_fraction_of_gpu_memory_to_use to allocate gpu memory");

625 626 627 628 629 630 631 632 633
/**
 * Memory related FLAG
 * Name: FLAGS_reallocate_gpu_memory_in_mb
 * Since Version: 1.4.0
 * Value Range: uint64, default=0 (MB)
 * Example:
 * Note: If the allocated GPU memory blocks are exhausted,
 *       additional GPU memory blocks are reallocated
 */
Z
Zeng Jinle 已提交
634
PADDLE_DEFINE_EXPORTED_uint64(
635 636
    reallocate_gpu_memory_in_mb,
    0ul,
Z
Zeng Jinle 已提交
637 638 639 640 641
    "If this flag is set, Paddle will reallocate the gpu memory with "
    "size specified by this flag. Else Paddle will reallocate by "
    "FLAGS_fraction_of_gpu_memory_to_use");

PADDLE_DEFINE_EXPORTED_uint64(
642 643
    gpu_memory_limit_mb,
    0UL,
Z
Zeng Jinle 已提交
644 645 646 647 648 649
    "The maximum gpu memory limit that the process can allocate. "
    "If it is equal to 0, there would be no limit and all gpu memory "
    "would be available to the process. If it is larger than 0, "
    "the process would raise out of memory error if the allocated "
    "memory exceeds the limit even though there is available "
    "memory on the gpu card. The unit is MB and default value is 0.");
650

651
#endif
652 653 654 655 656 657 658 659 660

/**
 * Scope related FLAG
 * Name: local_exe_sub_scope_limit
 * Since Version: 1.6.0
 * Value Range: double, default=256 (MB)
 * Example:
 * Note:
 */
Z
Zeng Jinle 已提交
661
PADDLE_DEFINE_EXPORTED_double(
662 663
    local_exe_sub_scope_limit,
    256.0,  // MBytes
Z
Zeng Jinle 已提交
664 665 666 667
    "The memory up limit of sub-scopes of local execution scope for "
    "each CUDAPlace. If you don't need to limit the memory, "
    "you should set FLAGS_local_exe_sub_scope_limit=-1. "
    "The default value is 256 MBytes.");
668

669
PADDLE_DEFINE_EXPORTED_bool(
670 671
    reader_queue_speed_test_mode,
    false,
672 673 674
    "If set true, the queue.pop will only get data from queue but not "
    "remove the data from queue for speed testing");

675 676 677 678 679 680 681 682
/**
 * MKLDNN related FLAG
 * Name: use_mkldnn
 * Since Version:
 * Value Range: bool, default=false
 * Example:
 * Note:
 */
Z
Zeng Jinle 已提交
683
PADDLE_DEFINE_EXPORTED_bool(use_mkldnn, false, "Use MKLDNN to run");
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

/**
 * Debug related FLAG
 * Name: FLAGS_call_stack_level
 * Since Version: 2.0.0
 * Value Range: int, default=2
 * Example:
 * Note: Used to debug. Determine the call stack to print when error or
 * exeception happens.
 * If FLAGS_call_stack_level == 0, only the error message summary will be shown.
 * If FLAGS_call_stack_level == 1, the python stack and  error message summary
 * will be shown.
 * If FLAGS_call_stack_level == 2, the python stack, c++ stack, and error
 * message summary will be shown.
 */
699 700 701
#ifdef PADDLE_NO_PYTHON
static const int32_t kDefaultCallStackLevel = 2;
#else
702
static const int32_t kDefaultCallStackLevel = 1;
703
#endif
704

Z
Zeng Jinle 已提交
705
PADDLE_DEFINE_EXPORTED_int32(
706 707
    call_stack_level,
    kDefaultCallStackLevel,
708 709 710 711 712 713 714 715
    "Determine the call stack to print when error or exeception happens."
    // TODO(zhiqiu): implement logic of FLAGS_call_stack_level==0
    // "If FLAGS_call_stack_level == 0, only the error message summary will be "
    // "shown. "
    "If FLAGS_call_stack_level == 1, the python stack and error message "
    "summary will be shown."
    "If FLAGS_call_stack_level == 2, the python stack, c++ stack, and "
    "error message summary will be shown.");
716 717 718 719 720 721 722 723 724 725

/**
 * Debug related FLAG
 * Name: sort_sum_gradient
 * Since Version: 2.0.0
 * Value Range: bool, default=false
 * Example:
 * Note: If True, gradients are summed by the reverse order of
 * the forward execution sequence.
 */
726 727
PADDLE_DEFINE_EXPORTED_bool(sort_sum_gradient,
                            false,
Z
Zeng Jinle 已提交
728 729
                            "Sum gradients by the reverse order of "
                            "the forward execution sequence.");
730 731 732 733 734 735 736 737 738

/**
 * Performance related FLAG
 * Name: max_inplace_grad_add
 * Since Version: 2.0.0
 * Value Range: int32, default=0
 * Example:
 * Note: The maximum number of inplace grad_add.
 */
Z
Zeng Jinle 已提交
739
PADDLE_DEFINE_EXPORTED_int32(
740 741
    max_inplace_grad_add,
    0,
742 743 744 745
    "The maximum number of inplace grad_add. When doing "
    "gradient accumulation, if the number of gradients need to that "
    "less FLAGS_max_inplace_grad_add, than it will be use several grad_add"
    "instead of sum. Default is 0.");
746 747 748 749 750 751 752 753 754

/**
 * Debug related FLAG
 * Name: tracer_mkldnn_ops_on
 * Since Version: 2.0.0
 * Value Range: string, default=empty
 * Example:
 * Note: Holds list of operation types with OneDNN kernels to be enabled.
 */
755 756
PADDLE_DEFINE_EXPORTED_string(tracer_mkldnn_ops_on,
                              "",
Z
Zeng Jinle 已提交
757
                              "List of OneDNN operation types to be turned on");
758 759 760 761 762 763 764 765 766

/**
 * Debug related FLAG
 * Name: tracer_mkldnn_ops_off
 * Since Version: 2.0.0
 * Value Range: string, default=empty
 * Example:
 * Note: Holds list of operation types with OneDNN kernels to be disabled.
 */
Z
Zeng Jinle 已提交
767
PADDLE_DEFINE_EXPORTED_string(
768 769
    tracer_mkldnn_ops_off,
    "",
Z
Zeng Jinle 已提交
770
    "List of OneDNN operation types to be turned off");
771

772 773 774 775 776 777 778 779 780
/**
 * Debug related FLAG
 * Name: check_kernel_launch
 * Since Version: 2.1.0
 * Value Range: bool, default=false
 * Example:
 * Note: Check kernel launch status after every kernel compute.
 */
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Z
Zeng Jinle 已提交
781
PADDLE_DEFINE_EXPORTED_bool(
782 783
    check_kernel_launch,
    false,
Z
Zeng Jinle 已提交
784
    "Check kernel launch status after every kernel compute");
785 786
#endif

787 788 789 790 791 792 793 794 795
/**
 * CUDNN related FLAG
 * Name: conv2d_disable_cudnn
 * Since Version:
 * Value Range: bool, default=false
 * Example:
 * Note: Disable cudnn in conv2d.
 */
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
796 797
PADDLE_DEFINE_EXPORTED_bool(conv2d_disable_cudnn,
                            false,
Z
Zeng Jinle 已提交
798
                            "Disable cudnn in conv2d");
799

800 801
PADDLE_DEFINE_EXPORTED_bool(use_fast_math,
                            false,
802
                            "Whether to use fast math GPU functions.");
803
#endif
B
Baibaifan 已提交
804 805 806 807 808 809 810 811 812

/**
 * Distributed related FLAG
 * Name: FLAGS_get_host_by_name_time
 * Since Version: 2.2.0
 * Value Range: int32, default=120
 * Example:
 * Note: Get host by name time.
 */
F
fwenguang 已提交
813 814 815
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_XPU) ||      \
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_MLU)
816 817
PADDLE_DEFINE_EXPORTED_int32(get_host_by_name_time,
                             120,
Z
Zeng Jinle 已提交
818
                             "The maximum time for get host by name time");
B
Baibaifan 已提交
819
#endif
820 821 822 823 824 825 826 827 828 829

/**
 * Distributed related FLAG
 * Name: FLAGS_apply_pass_to_program
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example: FLAGS_apply_pass_to_program=true would apply IR Pass to
 *          program when using Fleet APIs.
 * Note: Apply IR pass to program. Be only useful when using Fleet APIs.
 */
Z
Zeng Jinle 已提交
830
PADDLE_DEFINE_EXPORTED_bool(
831 832
    apply_pass_to_program,
    false,
833
    "It controls whether to apply IR pass to program when using Fleet APIs");
Y
yaoxuefeng 已提交
834

D
danleifeng 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848
/**
 * Distributed related FLAG
 * Name: FLAGS_graph_load_in_parallel
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: Control whether load graph node and edge with multi threads parallely
 *       If it is not set, load graph data with one thread
 */
PADDLE_DEFINE_EXPORTED_bool(graph_load_in_parallel,
                            false,
                            "It controls whether load graph node and edge with "
                            "mutli threads parallely.");

L
lxsbupt 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862
/**
 * Distributed related FLAG
 * Name: FLAGS_graph_metapath_split_opt
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: Control whether load graph node and edge with multi threads parallely
 *       If it is not set, load graph data with one thread
 */
PADDLE_DEFINE_EXPORTED_bool(graph_metapath_split_opt,
                            false,
                            "It controls whether load graph node and edge with "
                            "mutli threads parallely.");

D
danleifeng 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876
/**
 * Distributed related FLAG
 * Name: FLAGS_graph_get_neighbor_id
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: Control get all neighbor id when running sub part graph
 *       If it is not set, do not need get neighbor id when run all part graph
 */
PADDLE_DEFINE_EXPORTED_bool(
    graph_get_neighbor_id,
    false,
    "It controls get all neighbor id when running sub part graph.");

L
lxsbupt 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
/**
 * Distributed related FLAG
 * Name: enable_exit_when_partial_worker
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: Control  whether exit trainer when an worker has no ins.
 *       If it is not set, trainer will exit until all worker finish train.
 */
PADDLE_DEFINE_EXPORTED_bool(
    enable_exit_when_partial_worker,
    false,
    "It controls whether exit trainer when an worker has no ins.");

/**
 * Distributed related FLAG
 * Name: enable_exit_when_partial_worker
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: represent gpugraph storage mode, 1 for full hbm, 2 for hbm + mem + ssd.
 */
PADDLE_DEFINE_EXPORTED_int32(gpugraph_storage_mode,
                             1,
                             "gpugraph storage mode, default 1");

F
Feng Xing 已提交
903
/**
L
Liu-xiandong 已提交
904
 * KP kernel related FLAG
F
Feng Xing 已提交
905 906 907
 * Name: FLAGS_run_kp_kernel
 * Since Version: 2.3.0
 * Value Range: bool, default=false
L
Liu-xiandong 已提交
908 909
 * Example: FLAGS_run_kp_kernel=true would use the kp kernel to compute in the
 * Op.
F
Feng Xing 已提交
910 911
 * Note:
 */
912 913
PADDLE_DEFINE_EXPORTED_bool(run_kp_kernel,
                            false,
L
Liu-xiandong 已提交
914
                            "It controls whether to run PaddlePaddle using KP");
F
Feng Xing 已提交
915

916
/**
917 918 919 920 921 922 923 924 925 926
 * Distributed related FLAG
 * Name: FLAGS_allreduce_record_one_event
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example: FLAGS_allreduce_record_one_event=true makes the allreduce
 *          operations would only wait one event instead of multiple events.
 * Note: Make the allreduce operations would only wait one event instead of
 *       multiple events. Currently, only fuse allreduce supports this.
 *       Otherwise, the precision may be wrong.
 */
927 928
PADDLE_DEFINE_EXPORTED_bool(allreduce_record_one_event,
                            false,
929 930 931 932 933
                            "It controls whether the allreduce operations "
                            "would only wait one event instead of multiple "
                            "events. Currently, only fuse allreduce supports "
                            "this. Otherwise, the precision may be wrong.");

934
#ifdef PADDLE_WITH_CINN
935
/*
936 937 938 939 940 941 942 943
 * CINN related FLAG
 * Name: FLAGS_use_cinn
 * Since Version: 2.3
 * Value Range: bool, default=false
 * Example: FLAGS_use_cinn=true would run PaddlePaddle using CINN
 */
PADDLE_DEFINE_EXPORTED_bool(
    use_cinn, false, "It controls whether to run PaddlePaddle using CINN");
944 945 946 947 948 949 950 951 952

/*
 * CINN related FLAG
 * Name: FLAGS_allow_cinn_ops
 * Since Version: 2.3
 * Value Range: string, default=""
 * Example: FLAGS_allow_cinn_ops="mul;relu" would only cover `mul` and `relu`
 * when using CINN
 */
953 954
PADDLE_DEFINE_EXPORTED_string(allow_cinn_ops,
                              "",
955 956 957 958 959 960 961 962 963 964 965
                              "It controls the cinn op subset to be used, "
                              "which has the highest priority.");

/*
 * CINN related FLAG
 * Name: FLAGS_deny_cinn_ops
 * Since Version: 2.3
 * Value Range: string, default=""
 * Example: FLAGS_deny_cinn_ops="mul;relu" would block `mul` and `relu` two ops
 * when using CINN
 */
966 967
PADDLE_DEFINE_EXPORTED_string(deny_cinn_ops,
                              "",
968
                              "It controls the cinn op subset to be not used.");
969 970 971 972 973 974 975 976 977 978

/*
 * CINN related FLAG
 * Name: FLAGS_enable_pe_launch_cinn
 * Since Version: 2.3
 * Value Range: bool, default=true
 * Example: FLAGS_enable_pe_launch_cinn=true would execute the CINN compiled
 * instructions of a paddle graph with ParallelExecutor, otherwise with the
 * CINN compiled runtime program in sequential order.
 */
979 980
PADDLE_DEFINE_EXPORTED_bool(enable_pe_launch_cinn,
                            true,
981 982 983
                            "It controls whether to execute cinn compiled "
                            "program with ParallelExecutor");

984 985 986 987 988 989 990 991 992 993 994 995 996 997
/*
 * CINN related FLAG
 * Name: FLAGS_enable_interpretercore_launch_cinn
 * Since Version: 2.4
 * Value Range: bool, default=true
 * Example: FLAGS_enable_interpretercore_launch_cinn=true would execute the CINN
 * compiled instructions of a paddle graph with InterpreterCore, otherwise with
 * the CINN compiled runtime program in sequential order.
 */
PADDLE_DEFINE_EXPORTED_bool(enable_interpretercore_launch_cinn,
                            true,
                            "It controls whether to execute cinn compiled "
                            "program with InterpreterCore");

998 999 1000 1001 1002 1003 1004 1005
/*
 * CINN related FLAG
 * Name: FLAGS_enable_cinn_auto_tune
 * Since Version: 2.3
 * Value Range: bool, default=false
 * Example: FLAGS_enable_cinn_auto_tune=true would use CINN with its
 * auto-tune feature enabled
 */
1006 1007
PADDLE_DEFINE_EXPORTED_bool(enable_cinn_auto_tune,
                            false,
1008 1009 1010
                            "It controls whether to use cinn with "
                            "its auto-tune feature enabled");

1011
#endif
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/*
 * CUDA Graph related FLAG
 * Name: FLAGS_new_executor_use_cuda_graph
 * Since Version: 2.4
 * Value Range: bool, default=false
 * Example: FLAGS_new_executor_use_cuda_graph=true would allow
 * new executor to use CUDA Graph.
 */
PADDLE_DEFINE_EXPORTED_bool(new_executor_use_cuda_graph,
                            false,
                            "Use CUDA Graph in new executor");

1025 1026
DEFINE_int32(record_pool_max_size,
             2000000,
Y
yaoxuefeng 已提交
1027 1028
             "SlotRecordDataset slot record pool max size");
DEFINE_int32(slotpool_thread_num, 1, "SlotRecordDataset slot pool thread num");
1029 1030
DEFINE_bool(enable_slotpool_wait_release,
            false,
Y
yaoxuefeng 已提交
1031
            "enable slotrecord obejct wait release, default false");
1032 1033
DEFINE_bool(enable_slotrecord_reset_shrink,
            false,
Y
yaoxuefeng 已提交
1034
            "enable slotrecord obejct reset shrink memory, default false");
1035 1036
DEFINE_bool(enable_ins_parser_file,
            false,
D
danleifeng 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
            "enable parser ins file, default false");
PADDLE_DEFINE_EXPORTED_bool(
    gpugraph_enable_hbm_table_collision_stat,
    false,
    "enable hash collisions stat for hbm table, default false");
PADDLE_DEFINE_EXPORTED_double(gpugraph_hbm_table_load_factor,
                              0.75,
                              "the load factor of hbm table, default 0.75");
PADDLE_DEFINE_EXPORTED_bool(
    gpugraph_enable_gpu_direct_access,
    false,
    "enable direct access bwtween multi gpu cards, default false");
PADDLE_DEFINE_EXPORTED_bool(
    gpugraph_enable_segment_merge_grads,
    false,
    "enable segment merge gradients while push sparse, default false");
PADDLE_DEFINE_EXPORTED_uint64(
    gpugraph_merge_grads_segment_size,
    128,
    "segment size with segment gradient merge, default 128");
L
lxsbupt 已提交
1057 1058 1059
PADDLE_DEFINE_EXPORTED_uint64(gpugraph_slot_feasign_max_num,
                              5,
                              "max feasign number in one slot, default 5");
D
danleifeng 已提交
1060 1061 1062 1063 1064 1065 1066
PADDLE_DEFINE_EXPORTED_int32(
    gpugraph_dedup_pull_push_mode,
    0,
    "enable dedup keys while pull push sparse, default 0");
PADDLE_DEFINE_EXPORTED_bool(gpugraph_load_node_list_into_hbm,
                            true,
                            "enable load_node_list_into_hbm, default true");
L
lxsbupt 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
PADDLE_DEFINE_EXPORTED_int32(gpugraph_sparse_table_storage_mode,
                             0,
                             "parse_table_storage_mode, default 0");
PADDLE_DEFINE_EXPORTED_bool(enable_auto_detect_gpu_topo,
                            true,
                            "enable auto detect gpu topo, default true");
PADDLE_DEFINE_EXPORTED_bool(enable_auto_rdma_trans,
                            true,
                            "enable auto gpu rdma trans, default true");
PADDLE_DEFINE_EXPORTED_bool(enable_tracker_all2all,
                            false,
                            "enable tracker all2all log, default false");
PADDLE_DEFINE_EXPORTED_bool(enable_all2all_use_fp16,
                            false,
                            "enable all2all use fp16, default false");
PADDLE_DEFINE_EXPORTED_bool(enable_sparse_inner_gather,
                            false,
                            "enable sparse inner gather, default false");
PADDLE_DEFINE_EXPORTED_bool(gpugraph_debug_gpu_memory,
                            false,
                            "enable debug gpu memory, default false");
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/**
 * ProcessGroupNCCL related FLAG
 * Name: nccl_blocking_wait
 * Since Version:
 * Value Range: bool, default=false
 * Example:
 * Note: nccl blocking wait.
 */
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PADDLE_DEFINE_EXPORTED_bool(nccl_blocking_wait, false, "nccl blocking wait");
#endif
1099 1100 1101 1102 1103 1104 1105 1106 1107

/**
 * Autotune related FLAG
 * Name: FLAGS_use_autotune
 * Since Version: 2.3.0
 * Value Range: bool, default=false
 * Example:
 */
PADDLE_DEFINE_EXPORTED_bool(use_autotune, false, "Whether enable autotune.");
1108

H
hong 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/**
 * Conv Search cache max number related FLAG
 * Name: FLAGS_search_cache_max_number
 * Since Version: 2.3.0
 * Value Range: int32, default=1000000
 * Example:
 */
PADDLE_DEFINE_EXPORTED_int32(search_cache_max_number,
                             1000000,
                             "search_cache_max_number.");

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/**
 * Preformance related FLAG
 * Name: einsum_opt
 * Since Version: 2.3.0
 * Value Range: bool, default=false
 * Example:
 * Note: If True, EinsumOp will be optimimzed by innercache reuse, which
 * uses more gpu memory.
 */
PADDLE_DEFINE_EXPORTED_bool(
1130 1131
    einsum_opt,
    false,
1132
    "EinsumOp backward will be speedup at the expense of more gpu memory.");
1133 1134 1135 1136 1137 1138

/**
 * JitLayer related FLAG
 * Name: FLAGS_jit_engine_type
 * Since Version: 2.3.0
 * Value Range: string, {Executor, PE},
1139
 * default=Predictor
1140 1141
 * Example:
 * Note:
1142
 * FLAGS_jit_engine_type == New, using InterpreterEngine by default
1143
 * FLAGS_jit_engine_type == Predictor, using inference Predictor by default
1144 1145
 */
PADDLE_DEFINE_EXPORTED_string(jit_engine_type,
1146
                              "Predictor",
1147
                              "Choose default funciton type in JitLayer.");
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/**
 * Custom Device NPU related FLAG
 * Name: FLAGS_npu_storage_format
 * Since Version: 2.5.0
 * Value Range: bool, default=false
 * Example:
 * Note: Enable NPU Storage Format for Ascend910 performance improvement.
 */
PADDLE_DEFINE_EXPORTED_bool(npu_storage_format, false, "");

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
#ifdef PADDLE_WITH_CUDNN_FRONTEND
/**
 * CUDNNv8 related FLAG
 * Name: enable_cudnn_frontend
 * Since Version: 2.5.0
 * Value Range: bool, default=false
 * Example:
 * Note: Enable CUDNNv8 Frontend API for CUDNN kernels.
 */
PADDLE_DEFINE_EXPORTED_bool(enable_cudnn_frontend, false, "");
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

/**
 * CUDNNv8 related FLAG
 * Name: cudnn_cache_saturation_count
 * Since Version: 2.5.0
 * Value Range: int64_t, default=1
 * Example:
 * Note: Set saturation count for CUDNNv8 cache. A candidate execution
 * plan need to be considered as the fastest plan by exhaustive search
 * N times before it is actually added in the cache. It is useful when
 * the result of exhaustive search is unstable.
 */
PADDLE_DEFINE_EXPORTED_int32(cudnn_cache_saturation_count, 1, "");
1182
#endif  // PADDLE_WITH_CUDNN_FRONTEND
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

/**
 * CI related FLAG
 * Name: trt_ibuilder_cache
 * Since Version: 2.5.0
 * Value Range: bool, default=false
 * Example:
 * Note: This FLAG is only enabled when CI is running. If True, a persistent
 * IBuilder is added to avoid TensorRT unload/reload kernels.
 */
PADDLE_DEFINE_EXPORTED_bool(trt_ibuilder_cache,
                            false,
                            "Add a persistent ibuilder.");
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

/**
 * mmap_allocator related FLAG
 * Name: use_shm_cache
 * Since Version: 2.5.0
 * Value Range: bool, default=true
 * Example:
 * Note: . If True, mmap_allocator will cache shm file to decrease munmap
 * operation.
 */
PADDLE_DEFINE_EXPORTED_bool(use_shm_cache,
                            true,
                            "Use shm cache in mmap_allocator.");