Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0a3dbe8a
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0a3dbe8a
编写于
9月 30, 2021
作者:
Y
yaoxuefeng
提交者:
GitHub
9月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add slotrecord datafeed (#36099)
上级
c12176e8
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
787 addition
and
32 deletion
+787
-32
paddle/fluid/framework/data_feed.cc
paddle/fluid/framework/data_feed.cc
+642
-0
paddle/fluid/framework/data_feed.h
paddle/fluid/framework/data_feed.h
+37
-1
paddle/fluid/framework/data_feed_factory.cc
paddle/fluid/framework/data_feed_factory.cc
+3
-2
paddle/fluid/framework/data_set.cc
paddle/fluid/framework/data_set.cc
+29
-1
paddle/fluid/framework/fleet/ps_gpu_wrapper.cc
paddle/fluid/framework/fleet/ps_gpu_wrapper.cc
+73
-27
paddle/fluid/platform/flags.cc
paddle/fluid/platform/flags.cc
+3
-1
未找到文件。
paddle/fluid/framework/data_feed.cc
浏览文件 @
0a3dbe8a
此差异已折叠。
点击以展开。
paddle/fluid/framework/data_feed.h
浏览文件 @
0a3dbe8a
...
...
@@ -384,7 +384,7 @@ class CustomParser {
CustomParser
()
{}
virtual
~
CustomParser
()
{}
virtual
void
Init
(
const
std
::
vector
<
SlotConf
>&
slots
)
=
0
;
virtual
bool
Init
(
const
std
::
vector
<
AllSlotInfo
>&
slots
)
=
0
;
virtual
bool
Init
(
const
std
::
vector
<
AllSlotInfo
>&
slots
);
virtual
void
ParseOneInstance
(
const
char
*
str
,
Record
*
instance
)
=
0
;
virtual
bool
ParseOneInstance
(
const
std
::
string
&
line
,
...
...
@@ -1103,6 +1103,42 @@ class MultiSlotInMemoryDataFeed : public InMemoryDataFeed<Record> {
virtual
void
PutToFeedVec
(
const
Record
*
ins_vec
,
int
num
);
};
class
SlotRecordInMemoryDataFeed
:
public
InMemoryDataFeed
<
SlotRecord
>
{
public:
SlotRecordInMemoryDataFeed
()
{}
virtual
~
SlotRecordInMemoryDataFeed
()
{}
virtual
void
Init
(
const
DataFeedDesc
&
data_feed_desc
);
virtual
void
LoadIntoMemory
();
void
ExpandSlotRecord
(
SlotRecord
*
ins
);
protected:
virtual
bool
Start
();
virtual
int
Next
();
virtual
bool
ParseOneInstance
(
SlotRecord
*
instance
)
{
return
false
;
}
virtual
bool
ParseOneInstanceFromPipe
(
SlotRecord
*
instance
)
{
return
false
;
}
// virtual void ParseOneInstanceFromSo(const char* str, T* instance,
// CustomParser* parser) {}
virtual
void
PutToFeedVec
(
const
std
::
vector
<
SlotRecord
>&
ins_vec
)
{}
virtual
void
LoadIntoMemoryByCommand
(
void
);
virtual
void
LoadIntoMemoryByLib
(
void
);
virtual
void
LoadIntoMemoryByLine
(
void
);
virtual
void
LoadIntoMemoryByFile
(
void
);
virtual
void
SetInputChannel
(
void
*
channel
)
{
input_channel_
=
static_cast
<
ChannelObject
<
SlotRecord
>*>
(
channel
);
}
bool
ParseOneInstance
(
const
std
::
string
&
line
,
SlotRecord
*
rec
);
virtual
void
PutToFeedVec
(
const
SlotRecord
*
ins_vec
,
int
num
);
float
sample_rate_
=
1.0
f
;
int
use_slot_size_
=
0
;
int
float_use_slot_size_
=
0
;
int
uint64_use_slot_size_
=
0
;
std
::
vector
<
AllSlotInfo
>
all_slots_info_
;
std
::
vector
<
UsedSlotInfo
>
used_slots_info_
;
size_t
float_total_dims_size_
=
0
;
std
::
vector
<
int
>
float_total_dims_without_inductives_
;
};
class
PaddleBoxDataFeed
:
public
MultiSlotInMemoryDataFeed
{
public:
PaddleBoxDataFeed
()
{}
...
...
paddle/fluid/framework/data_feed_factory.cc
浏览文件 @
0a3dbe8a
...
...
@@ -58,8 +58,8 @@ std::shared_ptr<DataFeed> DataFeedFactory::CreateDataFeed(
std
::
string
data_feed_class
)
{
if
(
g_data_feed_map
.
count
(
data_feed_class
)
<
1
)
{
LOG
(
WARNING
)
<<
"Your DataFeed "
<<
data_feed_class
<<
"is not supported currently"
;
LOG
(
WARNING
)
<<
"Supported DataFeed: "
<<
DataFeedTypeList
();
<<
"
is not supported currently"
;
LOG
(
WARNING
)
<<
"
Supported DataFeed: "
<<
DataFeedTypeList
();
exit
(
-
1
);
}
return
g_data_feed_map
[
data_feed_class
]();
...
...
@@ -68,6 +68,7 @@ std::shared_ptr<DataFeed> DataFeedFactory::CreateDataFeed(
REGISTER_DATAFEED_CLASS
(
MultiSlotDataFeed
);
REGISTER_DATAFEED_CLASS
(
MultiSlotInMemoryDataFeed
);
REGISTER_DATAFEED_CLASS
(
PaddleBoxDataFeed
);
REGISTER_DATAFEED_CLASS
(
SlotRecordInMemoryDataFeed
);
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && !defined(_WIN32)
REGISTER_DATAFEED_CLASS
(
MultiSlotFileInstantDataFeed
);
#endif
...
...
paddle/fluid/framework/data_set.cc
浏览文件 @
0a3dbe8a
...
...
@@ -1609,7 +1609,35 @@ void SlotRecordDataset::DynamicAdjustChannelNum(int channel_num,
void
SlotRecordDataset
::
PrepareTrain
()
{
#ifdef PADDLE_WITH_GLOO
return
;
if
(
enable_heterps_
)
{
if
(
input_records_
.
size
()
==
0
&&
input_channel_
!=
nullptr
&&
input_channel_
->
Size
()
!=
0
)
{
input_channel_
->
ReadAll
(
input_records_
);
VLOG
(
3
)
<<
"read from channel to records with records size: "
<<
input_records_
.
size
();
}
VLOG
(
3
)
<<
"input records size: "
<<
input_records_
.
size
();
int64_t
total_ins_num
=
input_records_
.
size
();
std
::
vector
<
std
::
pair
<
int
,
int
>>
offset
;
int
default_batch_size
=
reinterpret_cast
<
SlotRecordInMemoryDataFeed
*>
(
readers_
[
0
].
get
())
->
GetDefaultBatchSize
();
VLOG
(
3
)
<<
"thread_num: "
<<
thread_num_
<<
" memory size: "
<<
total_ins_num
<<
" default batch_size: "
<<
default_batch_size
;
compute_thread_batch_nccl
(
thread_num_
,
total_ins_num
,
default_batch_size
,
&
offset
);
VLOG
(
3
)
<<
"offset size: "
<<
offset
.
size
();
for
(
int
i
=
0
;
i
<
thread_num_
;
i
++
)
{
reinterpret_cast
<
SlotRecordInMemoryDataFeed
*>
(
readers_
[
i
].
get
())
->
SetRecord
(
&
input_records_
[
0
]);
}
for
(
size_t
i
=
0
;
i
<
offset
.
size
();
i
++
)
{
reinterpret_cast
<
SlotRecordInMemoryDataFeed
*>
(
readers_
[
i
%
thread_num_
].
get
())
->
AddBatchOffset
(
offset
[
i
]);
}
}
#else
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"dataset set heterps need compile with GLOO"
));
...
...
paddle/fluid/framework/fleet/ps_gpu_wrapper.cc
浏览文件 @
0a3dbe8a
...
...
@@ -45,9 +45,7 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task) {
platform
::
Timer
timeline
;
timeline
.
Start
();
int
device_num
=
heter_devices_
.
size
();
MultiSlotDataset
*
dataset
=
dynamic_cast
<
MultiSlotDataset
*>
(
dataset_
);
gpu_task
->
init
(
thread_keys_shard_num_
,
device_num
);
auto
input_channel
=
dataset
->
GetInputChannel
();
auto
&
local_keys
=
gpu_task
->
feature_keys_
;
auto
&
local_ptr
=
gpu_task
->
value_ptr_
;
...
...
@@ -68,35 +66,83 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task) {
for
(
int
i
=
0
;
i
<
thread_keys_thread_num_
;
i
++
)
{
thread_keys_
[
i
].
resize
(
thread_keys_shard_num_
);
}
const
std
::
deque
<
Record
>&
vec_data
=
input_channel
->
GetData
();
size_t
total_len
=
vec_data
.
size
()
;
size_t
len_per_thread
=
total_len
/
thread_keys_thread_num_
;
int
remain
=
total_len
%
thread_keys_thread_num_
;
size_t
total_len
=
0
;
size_t
len_per_thread
=
0
;
int
remain
=
0
;
size_t
begin
=
0
;
auto
gen_func
=
[
this
](
const
std
::
deque
<
Record
>&
total_data
,
int
begin_index
,
int
end_index
,
int
i
)
{
for
(
auto
iter
=
total_data
.
begin
()
+
begin_index
;
iter
!=
total_data
.
begin
()
+
end_index
;
iter
++
)
{
const
auto
&
ins
=
*
iter
;
const
auto
&
feasign_v
=
ins
.
uint64_feasigns_
;
for
(
const
auto
feasign
:
feasign_v
)
{
uint64_t
cur_key
=
feasign
.
sign
().
uint64_feasign_
;
int
shard_id
=
cur_key
%
thread_keys_shard_num_
;
this
->
thread_keys_
[
i
][
shard_id
].
insert
(
cur_key
);
std
::
string
data_set_name
=
std
::
string
(
typeid
(
*
dataset_
).
name
());
if
(
data_set_name
.
find
(
"SlotRecordDataset"
)
!=
std
::
string
::
npos
)
{
VLOG
(
0
)
<<
"ps_gpu_wrapper use SlotRecordDataset"
;
SlotRecordDataset
*
dataset
=
dynamic_cast
<
SlotRecordDataset
*>
(
dataset_
);
auto
input_channel
=
dataset
->
GetInputChannel
();
VLOG
(
0
)
<<
"yxf::buildtask::inputslotchannle size: "
<<
input_channel
->
Size
();
const
std
::
deque
<
SlotRecord
>&
vec_data
=
input_channel
->
GetData
();
total_len
=
vec_data
.
size
();
len_per_thread
=
total_len
/
thread_keys_thread_num_
;
remain
=
total_len
%
thread_keys_thread_num_
;
VLOG
(
0
)
<<
"total len: "
<<
total_len
;
auto
gen_func
=
[
this
](
const
std
::
deque
<
SlotRecord
>&
total_data
,
int
begin_index
,
int
end_index
,
int
i
)
{
for
(
auto
iter
=
total_data
.
begin
()
+
begin_index
;
iter
!=
total_data
.
begin
()
+
end_index
;
iter
++
)
{
const
auto
&
ins
=
*
iter
;
const
auto
&
feasign_v
=
ins
->
slot_uint64_feasigns_
.
slot_values
;
for
(
const
auto
feasign
:
feasign_v
)
{
int
shard_id
=
feasign
%
thread_keys_shard_num_
;
this
->
thread_keys_
[
i
][
shard_id
].
insert
(
feasign
);
}
}
};
for
(
int
i
=
0
;
i
<
thread_keys_thread_num_
;
i
++
)
{
threads
.
push_back
(
std
::
thread
(
gen_func
,
std
::
ref
(
vec_data
),
begin
,
begin
+
len_per_thread
+
(
i
<
remain
?
1
:
0
),
i
));
begin
+=
len_per_thread
+
(
i
<
remain
?
1
:
0
);
}
};
for
(
int
i
=
0
;
i
<
thread_keys_thread_num_
;
i
++
)
{
threads
.
push_back
(
std
::
thread
(
gen_func
,
std
::
ref
(
vec_data
),
begin
,
begin
+
len_per_thread
+
(
i
<
remain
?
1
:
0
),
i
));
begin
+=
len_per_thread
+
(
i
<
remain
?
1
:
0
);
}
for
(
std
::
thread
&
t
:
threads
)
{
t
.
join
();
for
(
std
::
thread
&
t
:
threads
)
{
t
.
join
();
}
timeline
.
Pause
();
VLOG
(
1
)
<<
"GpuPs build task cost "
<<
timeline
.
ElapsedSec
()
<<
" seconds."
;
}
else
{
CHECK
(
data_set_name
.
find
(
"MultiSlotDataset"
)
!=
std
::
string
::
npos
);
VLOG
(
0
)
<<
"ps_gpu_wrapper use MultiSlotDataset"
;
MultiSlotDataset
*
dataset
=
dynamic_cast
<
MultiSlotDataset
*>
(
dataset_
);
auto
input_channel
=
dataset
->
GetInputChannel
();
const
std
::
deque
<
Record
>&
vec_data
=
input_channel
->
GetData
();
total_len
=
vec_data
.
size
();
len_per_thread
=
total_len
/
thread_keys_thread_num_
;
remain
=
total_len
%
thread_keys_thread_num_
;
auto
gen_func
=
[
this
](
const
std
::
deque
<
Record
>&
total_data
,
int
begin_index
,
int
end_index
,
int
i
)
{
for
(
auto
iter
=
total_data
.
begin
()
+
begin_index
;
iter
!=
total_data
.
begin
()
+
end_index
;
iter
++
)
{
const
auto
&
ins
=
*
iter
;
const
auto
&
feasign_v
=
ins
.
uint64_feasigns_
;
for
(
const
auto
feasign
:
feasign_v
)
{
uint64_t
cur_key
=
feasign
.
sign
().
uint64_feasign_
;
int
shard_id
=
cur_key
%
thread_keys_shard_num_
;
this
->
thread_keys_
[
i
][
shard_id
].
insert
(
cur_key
);
}
}
};
for
(
int
i
=
0
;
i
<
thread_keys_thread_num_
;
i
++
)
{
threads
.
push_back
(
std
::
thread
(
gen_func
,
std
::
ref
(
vec_data
),
begin
,
begin
+
len_per_thread
+
(
i
<
remain
?
1
:
0
),
i
));
begin
+=
len_per_thread
+
(
i
<
remain
?
1
:
0
);
}
for
(
std
::
thread
&
t
:
threads
)
{
t
.
join
();
}
timeline
.
Pause
();
VLOG
(
1
)
<<
"GpuPs build task cost "
<<
timeline
.
ElapsedSec
()
<<
" seconds."
;
}
timeline
.
Pause
();
VLOG
(
1
)
<<
"GpuPs build task cost "
<<
timeline
.
ElapsedSec
()
<<
" seconds."
;
timeline
.
Start
();
...
...
paddle/fluid/platform/flags.cc
浏览文件 @
0a3dbe8a
...
...
@@ -687,4 +687,6 @@ DEFINE_int32(slotpool_thread_num, 1, "SlotRecordDataset slot pool thread num");
DEFINE_bool
(
enable_slotpool_wait_release
,
false
,
"enable slotrecord obejct wait release, default false"
);
DEFINE_bool
(
enable_slotrecord_reset_shrink
,
false
,
"enable slotrecord obejct reset shrink memory, default false"
);
\ No newline at end of file
"enable slotrecord obejct reset shrink memory, default false"
);
DEFINE_bool
(
enable_ins_parser_file
,
false
,
"enable parser ins file , default false"
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录