partial_program.py 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25 26 27 28
from paddle.fluid.contrib.mixed_precision.decorator import (
    AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    cast_model_to_fp16,
29
    rewrite_program,
30
)
31 32 33 34 35 36 37 38 39 40 41
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
    _is_enable_standalone_executor,
)
from paddle.fluid.framework import _apply_pass
from paddle.fluid.layers.utils import _hash_with_id, flatten, pack_sequence_as

from . import logging_utils
from .return_transformer import RETURN_NO_VALUE_MAGIC_NUM
42

43 44
__all__ = []

45

46
class NestSequence:
47 48 49 50 51 52 53
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
54
        self.__input_list = self.tolist()
55 56 57 58 59 60 61 62 63 64 65 66 67
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
68
        assert len(self.__input_list) == len(value_list)
69 70 71 72
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
73
        for idx, var in enumerate(self.__input_list):
74
            if isinstance(
75 76
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
77 78 79 80 81 82 83 84 85 86
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
87
            for var in self.__input_list:
88
                if not isinstance(
89 90
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
91 92
                    warning_types.add(type(var))
            if warning_types:
93
                logging_utils.warn(
94 95
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
96 97 98 99
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
100 101 102 103 104 105

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
106
        return self.__input_list[item]
107

108

109
class LazyInitialized:
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


132
class PartialProgramLayer:
133
    """
H
hjyp 已提交
134
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
135 136 137
    and execute them as a static subgraph.

    .. note::
138 139 140
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
141 142 143 144
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
145 146
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
147 148 149
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
150
        Layer: A Layer object that run all ops internally in static graph mode.
151 152
    """

153 154 155
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
156
        super().__init__()
157 158
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
159
        self._params = parameters if parameters is not None else []
160

161 162 163
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

164
        self._origin_main_program = self._verify_program(main_program)
165 166 167
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
168
        # Set default mode to train
169
        self.training = True
170

171 172 173 174
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
175
        # For AMP training
176 177
        self._amp_list = AutoMixedPrecisionLists(
            custom_white_list=custom_white_list,
178 179
            custom_black_list=custom_black_list,
        )
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

200 201 202 203 204 205 206 207
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

208 209 210 211 212 213 214
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
215 216
                self._origin_main_program
            )
217 218 219
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
220

221 222 223 224 225 226 227 228 229 230 231
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
            rewrite_program(amp_program, self._amp_list)
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
232

233 234 235
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
236 237
            for_test=is_infer_mode
        )
238
        with program_guard(pure_fp16_program):
239 240 241
            cast_model_to_fp16(
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
242 243 244 245
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
246 247
                pure_fp16_program
            )
248 249
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
250

251
    @switch_to_static_graph
252
    def _create_forward_backward_train_program(self):
253
        whole_program = self._train_program
254
        forward_end_op_index = self._infer_program.desc.block(0).op_size()
255 256 257
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
258

259 260
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
261
        whole_program = self._train_amp_program
262
        forward_end_op_index = self._infer_amp_program.desc.block(0).op_size()
263 264 265
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
266 267 268

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
269
        whole_program = self._train_pure_fp16_program
270
        forward_end_op_index = self._infer_pure_fp16_program.desc.block(
271 272 273 274 275
            0
        ).op_size()
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
276 277

    @LazyInitialized
278 279
    def _train_program(self):
        return self._create_program()
280

281
    @LazyInitialized
282 283
    def _infer_program(self):
        return self._create_program(is_infer_mode=True)
284

285 286 287 288 289 290 291
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
        return self._create_amp_program(is_infer_mode=True)
292 293 294

    @LazyInitialized
    def _train_pure_fp16_program(self):
295
        return self._create_pure_fp16_program()
296

297
    @LazyInitialized
298 299
    def _infer_pure_fp16_program(self):
        return self._create_pure_fp16_program(is_infer_mode=True)
300

301
    @LazyInitialized
302 303 304
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
305 306

    @LazyInitialized
307 308 309 310
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

311 312 313 314
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

    @property
    def whole_program(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program
            else:
                return self._train_program
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[0]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[0]
            else:
                program = self._train_forward_backward_program
                return program[0]
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[1]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[1]
            else:
                program = self._train_forward_backward_program
                return program[1]
        else:
370 371 372 373 374 375 376 377 378 379
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval
380

381 382
    @LazyInitialized
    def _train_program_id(self):
383
        program_id = _hash_with_id(self._train_program, self)
384 385 386
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
387
        return program_id
388

389 390 391 392
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

393 394 395
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
396 397 398
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
399 400
        return program_id

401 402 403 404
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

405 406 407
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
408 409 410
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
411 412
        return program_id

413 414 415 416
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

417 418 419 420 421 422 423 424
    @LazyInitialized
    def _param_grad_names(self):
        names = []
        # NOTE: `names` and `self._params` must be in the same order so that
        # the param grad name can be set correctly in the run_program.
        for param in self._params:
            candidate = [
                var_name
425
                for var_name in self._train_program.block(0).vars.keys()
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                if var_name.endswith(param.name + '@GRAD')
            ]
            if candidate:
                names.append(
                    max(candidate, key=lambda name: name.count('grad/'))
                )
            else:
                names.append(param.name + '@GRAD')
        return names

    @LazyInitialized
    def _out_grad_names(self):
        names = []
        fwd_end_op_index = self._get_end_op_index()
        for i in range(
            fwd_end_op_index + 1,
            min(
                fwd_end_op_index + 2 * len(self._outputs.var_ids),
                len(self.program.block(0).ops),
            ),
            2,
        ):
            op = self.program.block(0).ops[i]
            if op.type == 'fill_constant':
                var_name = op.output('Out')[0]
                names.append(var_name)
        return names

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    @property
    def whole_program_id(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

471 472 473 474 475 476 477 478 479 480 481 482
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

483 484 485
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
486 487 488 489 490 491 492
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
493

494 495 496 497 498 499 500 501 502
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
503 504
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
521 522 523 524 525 526 527 528 529 530
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
531 532 533 534 535 536

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
537 538 539 540 541 542
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
543 544 545 546 547 548 549 550 551 552
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
553 554
                outputs={"Out": var_grad_name},
            )
555 556 557
            return None

        to_processed_vars = list(
558 559
            filter(_need_aggregation, self._outputs.tolist())
        )
560 561 562
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

563
    @switch_to_static_graph
564
    def _append_backward_desc(self, main_program):
565 566
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
567
        targets = []
568
        for out in self._outputs.tolist():
569 570 571 572 573 574
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

575 576 577
        start_idx = len(main_program.block(0).ops) + 2 * len(
            self._outputs.tolist()
        )
578 579

        self.prepare_gradient_aggregation(start_idx, main_program, program)
580

581 582
        return program

583 584 585
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
586
        The `@to_static` may only decorated a sub function which
587 588 589 590 591 592
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
593
            found_param = False
594
            for block in program.blocks:
595
                for op in block.ops:
596 597 598 599
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
600 601 602 603
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
604 605 606 607
                    break

        self._params = required_params

608 609 610 611 612 613
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
614
                    var_base = None
J
Jiabin Yang 已提交
615
                    if not framework._in_eager_mode_:
616 617 618 619 620 621 622
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
623
                    else:
624 625 626 627 628 629 630
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
631
                    double_grads.append(var_base)
632
        return self._valid_vars(double_grads)
633

634
    def _get_end_op_index(self):
635 636 637 638 639
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
640
            infer_program = self.infer_program
641 642
        return infer_program.desc.block(0).op_size()

643 644
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
645

646 647
        self._cast_fp16_if_pure_fp16(in_vars)

648
        attrs = [
649
            'global_block',
650 651 652 653 654 655 656 657 658
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
659
        ]
660 661 662 663 664 665 666 667 668 669 670 671
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
672 673
        if self._cuda_graph_capture_mode:
            attrs.extend(
674 675 676 677 678 679 680 681 682 683 684 685
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
686 687 688
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
689 690 691 692 693 694 695
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
696

697
            _legacy_C_ops.run_program(
698 699
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
700
                self._valid_vars(out_vars),
701 702 703 704 705 706 707
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
708
        else:
709 710 711 712 713 714 715 716 717
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
718 719
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
720

721 722 723 724
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
725 726 727 728 729
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
730 731 732
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

733 734
    @property
    def program(self):
735
        return self.whole_program
736

737 738
    @property
    def program_id(self):
739
        return self.whole_program_id
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program
758

759
    @switch_to_static_graph
760 761 762
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
763 764
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
765
        backward_start_op_index = forward_end_op_index + 2 * len(
766 767
            self._outputs.var_ids
        )
768
        backward_end_op_index = whole_program.desc.block(0).op_size()
769 770 771 772 773
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
774
        backward_builded_program = add_build_strategy_for(
775 776 777 778
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
779 780 781 782 783 784 785 786 787 788 789 790
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
791
        )
792

793 794 795
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
796 797 798 799 800 801
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
802
            "for_partial_block": "bool",
803 804 805 806
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
807 808 809 810
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
811 812 813
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": forward_mem_opt_skip_vars,
814
            "for_partial_block": True,
815
        }
816 817 818 819 820 821 822
        _apply_pass(
            forward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
823 824 825
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": backward_mem_opt_skip_vars,
826
            "for_partial_block": True,
827
        }
828 829 830 831 832 833 834
        _apply_pass(
            backward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
863
                backward_program.desc, True
864 865 866 867
            ):
                skip_vars.append(var_name)
        return skip_vars

868 869 870 871 872
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
873 874
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
875 876
        # Convert variable into VarBase and feed in training data.
        input_vars = []
877
        expected_place = framework._current_expected_place()
878
        for i, value in enumerate(flatten_inputs):
879
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
880
                var = None
J
Jiabin Yang 已提交
881
                if not framework._in_eager_mode_:
882 883 884 885 886 887 888
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
889
                else:
890 891 892 893 894 895 896
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
897
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
898 899 900 901
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
902 903
                    expected_place
                ):
904 905
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
906 907
                else:
                    var = value
908
                var.name = self._inputs[i].desc.name()
909 910 911
            else:
                continue
            input_vars.append(var)
912

913 914 915
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

916 917
        def create_out(var_id):
            var = self._outputs[var_id]
918
            assert isinstance(var, framework.Variable)
919
            var_desc = var.desc
J
Jiabin Yang 已提交
920
            varbase = None
921 922 923 924

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
925
            if not framework._in_eager_mode_:
926 927 928 929 930 931 932
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
933
            else:
934 935 936 937 938 939 940
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
941
            var_base.stop_gradient = var.stop_gradient
942
            out_varbase_map[var_desc.name()] = var_base
943 944 945 946 947 948
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
949

950
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
951
        # Hold forward variables
J
Jiabin Yang 已提交
952
        tmp_scope_vec = None
953 954 955
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
J
Jiabin Yang 已提交
956
        if not framework._in_eager_mode_:
957 958 959 960 961 962 963
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
964
            tmp_scope_vec.value().set_scope(inner_scope)
965 966
        else:
            tmp_scope_vec = [inner_scope]
967
        return tmp_scope_vec
968

969
    def _create_cuda_graph_vec(self):
970 971 972 973 974 975 976
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
977 978 979
        var.stop_gradient = True
        return var

980 981 982 983 984 985 986 987 988
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
989
        if outs is not None and len(outs) == 1:
990 991 992 993
            outs = outs[0]

        return outs

994 995 996 997
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

998
    def _is_no_value(self, var):
999 1000 1001
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
1002 1003
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
1004 1005 1006 1007 1008 1009 1010
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
1011
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
1012 1013 1014 1015 1016
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1017 1018 1019
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1020 1021 1022 1023
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1024
            has_removed = len(out_vars) > len(res)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1035
    def _set_grad_type(self, params, train_program):
1036 1037 1038 1039 1040 1041 1042 1043
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1044
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1045 1046 1047 1048 1049
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1073 1074
                % type(self._params)
            )
1075

1076 1077 1078
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1079
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1080
                raise TypeError(
1081 1082 1083 1084
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1085
            param_and_buffer_names_set.add(var.name)
1086 1087

        for block in main_program.blocks:
1088
            for name, var in block.vars.items():
1089
                if isinstance(var, framework.Parameter):
1090
                    if name not in param_and_buffer_names_set:
1091
                        raise ValueError(
1092 1093 1094 1095 1096 1097
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1098 1099
                            % name
                        )
1100

1101 1102 1103 1104 1105 1106 1107 1108
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

1109

1110
def _create_fake_var():
1111
    """
1112
    Create a fake_var (force on CPU) to handle empty input or output
1113
    """
J
Jiabin Yang 已提交
1114
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
1115
        return [
1116 1117 1118 1119 1120 1121 1122
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1123 1124
        ]
    else:
1125
        return [
1126 1127 1128 1129 1130 1131 1132
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1133
        ]
1134 1135 1136 1137 1138 1139 1140


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1141 1142 1143 1144 1145 1146 1147
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1148 1149 1150


@switch_to_static_graph
1151
def add_build_strategy_for(
1152
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1153 1154
):
    if start_op_index < end_op_index:
1155 1156
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1157 1158
            build_strategy=build_strategy,
        )
1159 1160 1161
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1162 1163 1164
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1165 1166 1167 1168 1169 1170 1171
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program