trainer.py 13.1 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Y
Yu Yang 已提交
16 17 18 19 20
import core
import framework
import executor
import data_feeder
import contextlib
J
Jeff Wang 已提交
21
import io
Q
Qiao Longfei 已提交
22
import unique_name
Y
yuyang18 已提交
23
import parallel_executor
Y
Yu Yang 已提交
24 25 26

# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
Y
Yancey 已提交
27
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29 30
__all__ = [
    'Trainer',
Y
Yu Yang 已提交
31 32 33 34
    'BeginEpochEvent',
    'EndEpochEvent',
    'BeginStepEvent',
    'EndStepEvent',
H
Helin Wang 已提交
35 36 37
]


Y
Yu Yang 已提交
38 39 40 41 42 43 44 45
class BeginEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
46

Y
Yu Yang 已提交
47 48 49 50 51

class BeginStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
52
        self.fetch_metrics = True
Y
Yu Yang 已提交
53 54 55


class EndStepEvent(object):
Y
yuyang18 已提交
56
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
57 58
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
59
        self.metrics = metrics
H
Helin Wang 已提交
60 61


Q
Qiao Longfei 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
88
class Trainer(object):
Y
Yu Yang 已提交
89 90 91
    """

    Args:
Q
Qiao Longfei 已提交
92 93
        train_func(callable): A function which will return loss. The loss must be a scalar.
        infer_func(callable): A function which will return predict, used to save inference model
Y
Yu Yang 已提交
94 95 96 97
        optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
        place: The device place of this trainer.
    """

Q
Qiao Longfei 已提交
98 99 100 101 102
    def __init__(self,
                 train_func,
                 infer_func,
                 optimizer,
                 param_path=None,
Y
yuyang18 已提交
103 104 105
                 place=None,
                 parallel=False):
        self.parallel = parallel
H
Helin Wang 已提交
106
        # 1. we need to generate a framework.Program by calling
H
Helin Wang 已提交
107
        # program_func. Reference: fluid.program_guard in
H
Helin Wang 已提交
108
        # test_word2vec.py
Q
Qiao Longfei 已提交
109 110 111 112
        if not isinstance(optimizer, opt_module.Optimizer):
            raise TypeError("The optimizer should be an instance of Optimizer")

        self.infer_func = infer_func
H
Helin Wang 已提交
113
        self.scope = core.Scope()
Y
Yu Yang 已提交
114 115 116 117 118

        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
119
            program_func_outs = train_func()
Y
yuyang18 已提交
120
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
121 122
                program_func_outs, list) else [program_func_outs]
            self.test_program = self.train_program.clone()
Y
Yu Yang 已提交
123 124 125
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
F
fengjiayi 已提交
126
            # The fisrt element of program_func_outs is loss.
Y
yuyang18 已提交
127
            loss = self.train_func_outputs[0]
128
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
129

Q
Qiao Longfei 已提交
130
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
131

Q
Qiao Longfei 已提交
132
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
133

H
Helin Wang 已提交
134 135
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
136
        # Run startup program
137 138 139
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
140

H
Helin Wang 已提交
141 142
        if param_path:
            # load params from param_path into scope
J
Jeff Wang 已提交
143
            io.load_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
144

Q
Qiao Longfei 已提交
145
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if training_role == "PSERVER":
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
182

Y
yuyang18 已提交
183
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196
        """
        Train the model.

        Args:
            num_epochs: The number of epoch. An epoch will process all data in reader
            event_handler: The event handler. A function with type (ev:Event)->void
            reader:
            feed_order: Feeding order of reader. None will following the defining
                order in program

        Returns:

        """
197 198 199 200 201 202
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
203 204 205 206 207 208
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
209

F
fengjiayi 已提交
210 211 212 213 214 215 216 217 218 219
    def test(self, reader, feed_order=None):
        """
        Test the model on given test data

        Args:
            reader: The reader that yields test data.
            feed_order: Feeding order of reader. None will following the defining
                order in program
        """

Y
yuyang18 已提交
220 221
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
222

H
Helin Wang 已提交
223 224
    def save_params(self, param_path):
        # reference: save_persistables in io.py
225 226 227
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
228

Q
Qiao Longfei 已提交
229 230 231 232 233 234 235 236
    def save_inference_model(self, model_path):
        inference_program = framework.Program()
        with framework.program_guard(inference_program):
            with unique_name.guard():
                predict_var = self.infer_func()
        predict_var = self.train_program.block(0).var(predict_var.name)
        exe = executor.Executor(self.place)
        io.save_inference_model(model_path, [], [predict_var], exe)
Y
Yu Yang 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
260
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
261 262
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
263
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
        for epoch_id in range(num_epochs):
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
            event_handler(EndEpochEvent(epoch_id))
F
fengjiayi 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
301 302 303 304 305 306 307 308 309
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
            for epoch_id in range(num_epochs):
Y
yuyang18 已提交
310 311
                self._train_by_any_executor(event_handler, pe, num_epochs,
                                            reader)
Y
yuyang18 已提交
312 313 314 315 316 317 318 319 320 321 322

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

F
fengjiayi 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

    if feed_order is None:
        feed_var_list = [
            var for var in program.global_block().vars.itervalues()
            if var.is_data
        ]
    elif isinstance(feed_order, list):
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list