trainer.py 12.8 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Y
Yu Yang 已提交
16 17 18 19 20
import core
import framework
import executor
import data_feeder
import contextlib
J
Jeff Wang 已提交
21
import io
Q
Qiao Longfei 已提交
22
import unique_name
Y
yuyang18 已提交
23
import parallel_executor
Y
Yu Yang 已提交
24 25 26

# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
Y
Yancey 已提交
27
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29 30
__all__ = [
    'Trainer',
Y
Yu Yang 已提交
31 32 33 34
    'BeginEpochEvent',
    'EndEpochEvent',
    'BeginStepEvent',
    'EndStepEvent',
H
Helin Wang 已提交
35 36 37
]


Y
Yu Yang 已提交
38 39 40 41 42 43 44 45
class BeginEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
46

Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57

class BeginStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id


class EndStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
H
Helin Wang 已提交
58 59


Q
Qiao Longfei 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
86
class Trainer(object):
Y
Yu Yang 已提交
87 88 89
    """

    Args:
Q
Qiao Longfei 已提交
90 91
        train_func(callable): A function which will return loss. The loss must be a scalar.
        infer_func(callable): A function which will return predict, used to save inference model
Y
Yu Yang 已提交
92 93 94 95
        optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
        place: The device place of this trainer.
    """

Q
Qiao Longfei 已提交
96 97 98 99 100
    def __init__(self,
                 train_func,
                 infer_func,
                 optimizer,
                 param_path=None,
Y
yuyang18 已提交
101 102 103
                 place=None,
                 parallel=False):
        self.parallel = parallel
H
Helin Wang 已提交
104
        # 1. we need to generate a framework.Program by calling
H
Helin Wang 已提交
105
        # program_func. Reference: fluid.program_guard in
H
Helin Wang 已提交
106
        # test_word2vec.py
Q
Qiao Longfei 已提交
107 108 109 110
        if not isinstance(optimizer, opt_module.Optimizer):
            raise TypeError("The optimizer should be an instance of Optimizer")

        self.infer_func = infer_func
H
Helin Wang 已提交
111
        self.scope = core.Scope()
Y
Yu Yang 已提交
112 113 114 115 116

        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
117
            program_func_outs = train_func()
Y
yuyang18 已提交
118
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
119 120
                program_func_outs, list) else [program_func_outs]
            self.test_program = self.train_program.clone()
Y
Yu Yang 已提交
121 122 123
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
F
fengjiayi 已提交
124
            # The fisrt element of program_func_outs is loss.
Y
yuyang18 已提交
125
            loss = self.train_func_outputs[0]
126
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
127

Q
Qiao Longfei 已提交
128
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
129

Q
Qiao Longfei 已提交
130
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
131

H
Helin Wang 已提交
132 133
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
134
        # Run startup program
135 136 137
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
138

H
Helin Wang 已提交
139 140
        if param_path:
            # load params from param_path into scope
J
Jeff Wang 已提交
141
            io.load_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
142

Q
Qiao Longfei 已提交
143
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if training_role == "PSERVER":
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
180

Y
yuyang18 已提交
181
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
        """
        Train the model.

        Args:
            num_epochs: The number of epoch. An epoch will process all data in reader
            event_handler: The event handler. A function with type (ev:Event)->void
            reader:
            feed_order: Feeding order of reader. None will following the defining
                order in program

        Returns:

        """
195 196 197 198 199 200
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
201 202 203 204 205 206
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
207

F
fengjiayi 已提交
208 209 210 211 212 213 214 215 216 217
    def test(self, reader, feed_order=None):
        """
        Test the model on given test data

        Args:
            reader: The reader that yields test data.
            feed_order: Feeding order of reader. None will following the defining
                order in program
        """

Y
yuyang18 已提交
218 219
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
220

H
Helin Wang 已提交
221 222
    def save_params(self, param_path):
        # reference: save_persistables in io.py
223 224 225
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
226

Q
Qiao Longfei 已提交
227 228 229 230 231 232 233 234
    def save_inference_model(self, model_path):
        inference_program = framework.Program()
        with framework.program_guard(inference_program):
            with unique_name.guard():
                predict_var = self.infer_func()
        predict_var = self.train_program.block(0).var(predict_var.name)
        exe = executor.Executor(self.place)
        io.save_inference_model(model_path, [], [predict_var], exe)
Y
Yu Yang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
258
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
259 260
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
261
            exe = executor.Executor(self.place)
Y
Yu Yang 已提交
262 263 264 265 266 267 268
            for epoch_id in range(num_epochs):
                event_handler(BeginEpochEvent(epoch_id))
                for step_id, data in enumerate(reader()):
                    event_handler(BeginStepEvent(epoch_id, step_id))
                    exe.run(feed=feeder.feed(data), fetch_list=[])
                    event_handler(EndStepEvent(epoch_id, step_id))
                event_handler(EndEpochEvent(epoch_id))
F
fengjiayi 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
            for epoch_id in range(num_epochs):
                event_handler(BeginEpochEvent(epoch_id=epoch_id))
                for step_id, data in enumerate(reader()):
                    event_handler(
                        BeginStepEvent(
                            epoch_id=epoch_id, step_id=step_id))
                    pe.run(feed=data, fetch_list=[])
                    event_handler(
                        EndStepEvent(
                            epoch_id=epoch_id, step_id=step_id))

                event_handler(EndEpochEvent(epoch_id=epoch_id))

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

F
fengjiayi 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

    if feed_order is None:
        feed_var_list = [
            var for var in program.global_block().vars.itervalues()
            if var.is_data
        ]
    elif isinstance(feed_order, list):
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list