test_imperative_ptb_rnn.py 14.7 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
from paddle.fluid.imperative.nn import Embedding
J
JiabinYang 已提交
20 21 22
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
23
from test_imperative_base import new_program_scope
J
JiabinYang 已提交
24
import numpy as np
25
import six
J
JiabinYang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from paddle.fluid.backward import append_backward


class SimpleLSTMRNN(fluid.imperative.Layer):
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
        super(SimpleLSTMRNN, self).__init__()
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
41 42
        self._input = None
        self._num_steps = num_steps
43 44
        from paddle.fluid.layer_helper import LayerHelper
        self._helper = LayerHelper('SimpleLSTMRNN', act="tanh")
J
JiabinYang 已提交
45 46 47 48 49 50 51 52 53 54

    def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.hidden_array = []
        self.cell_array = []
        self.mask_array = []

        for i in range(self._num_layers):
55 56 57 58
            weight_1 = self._helper.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
J
JiabinYang 已提交
59 60 61 62 63
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(weight_1)
64 65 66 67 68
            bias_1 = self._helper.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
J
JiabinYang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(bias_1)

            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        res = []
86 87
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
J
JiabinYang 已提交
88
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
89 90
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
91 92 93 94 95 96
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

97
                nn = fluid.layers.concat([self._input, pre_hidden], 1)
J
JiabinYang 已提交
98 99 100
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell
J
JiabinYang 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145


class PtbModel(fluid.imperative.Layer):
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
        super(PtbModel, self).__init__()
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
146 147
        from paddle.fluid.layer_helper import LayerHelper
        self._helper = LayerHelper('PtbModel', act="tanh")
J
JiabinYang 已提交
148 149 150 151 152 153
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
154
        self.embedding = Embedding(
J
JiabinYang 已提交
155 156 157 158 159 160 161
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
162 163 164
        self.softmax_weight = self._helper.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
J
JiabinYang 已提交
165 166 167
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
168 169 170
        self.softmax_bias = self._helper.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
J
JiabinYang 已提交
171 172 173 174
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

175 176 177
    def _build_once(self, input, label, init_hidden, init_cell):
        pass

J
JiabinYang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    def forward(self, input, label, init_hidden, init_cell):

        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
198
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
J
JiabinYang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)
        loss.permissions = True

        return loss, last_hidden, last_cell


class TestImperativePtbRnn(unittest.TestCase):
215
    def test_ptb_rnn_cpu_float32(self):
J
JiabinYang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4

        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            sgd = SGDOptimizer(learning_rate=1e-3)
236 237
            dy_param_updated = dict()
            dy_param_init = dict()
J
JiabinYang 已提交
238 239 240
            dy_loss = None
            last_hidden = None
            last_cell = None
J
JiabinYang 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            for i in range(2):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                if i == 0:
257
                    for param in ptb_model.parameters():
J
JiabinYang 已提交
258 259 260
                        dy_param_init[param.name] = param._numpy()
                dy_loss._backward()
                sgd.minimize(dy_loss)
261
                for param in ptb_model.parameters():
J
JiabinYang 已提交
262
                    dy_param_updated[param.name] = param._numpy()
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            exe = fluid.Executor(fluid.CPUPlace())
            sgd = SGDOptimizer(learning_rate=1e-3)
            x = fluid.layers.data(name="x", shape=[-1, 3, 1], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
289
            for param in ptb_model.parameters():
290 291 292 293 294 295
                static_param_name_list.append(param.name)

            out = exe.run(framework.default_startup_program(),
                          fetch_list=static_param_name_list)
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
J
JiabinYang 已提交
296 297 298
            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            for i in range(2):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_cell_value = out[1]
                static_last_hidden_value = out[2]
J
JiabinYang 已提交
321 322 323
                for k in range(3, len(out)):
                    static_param_updated[static_param_name_list[k - 3]] = out[k]

324 325 326 327 328 329 330 331 332 333 334 335 336 337
            self.assertTrue(
                np.allclose(static_loss_value.all(), dy_loss._numpy().all()))
            self.assertTrue(
                np.allclose(static_last_cell_value.all(),
                            last_cell._numpy().all()))
            self.assertTrue(
                np.allclose(static_last_hidden_value.all(),
                            last_hidden._numpy().all()))
            for key, value in six.iteritems(static_param_init):
                self.assertTrue(
                    np.allclose(value.all(), dy_param_init[key].all()))
            for key, value in six.iteritems(static_param_updated):
                self.assertTrue(
                    np.allclose(value.all(), dy_param_updated[key].all()))
J
JiabinYang 已提交
338 339 340 341


if __name__ == '__main__':
    unittest.main()