test_where_op.py 16.1 KB
Newer Older
1 2
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
# 
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
# 
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
G
GaoWei8 已提交
18
import paddle
19 20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward
26
from paddle.fluid.framework import _test_eager_guard
27 28 29 30


class TestWhereOp(OpTest):
    def setUp(self):
31
        self.op_type = 'where'
H
hong 已提交
32
        self.python_api = paddle.where
33 34 35 36 37
        self.init_config()
        self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
        self.outputs = {'Out': np.where(self.cond, self.x, self.y)}

    def test_check_output(self):
38
        self.check_output(check_eager=False)
39 40

    def test_check_grad(self):
41
        self.check_grad(['X', 'Y'], 'Out', check_eager=False)
42 43

    def init_config(self):
44 45 46
        self.x = np.random.uniform((-3), 5, 100).astype('float64')
        self.y = np.random.uniform((-3), 5, 100).astype('float64')
        self.cond = np.zeros(100).astype('bool')
47 48 49 50


class TestWhereOp2(TestWhereOp):
    def init_config(self):
51 52 53
        self.x = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.y = np.random.uniform((-5), 5, (60, 2)).astype('float64')
        self.cond = np.ones((60, 2)).astype('bool')
54 55 56 57


class TestWhereOp3(TestWhereOp):
    def init_config(self):
58 59
        self.x = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
        self.y = np.random.uniform((-3), 5, (20, 2, 4)).astype('float64')
60 61 62 63
        self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)


class TestWhereAPI(unittest.TestCase):
G
GaoWei8 已提交
64 65
    def setUp(self):
        self.init_data()
66

G
GaoWei8 已提交
67 68 69
    def init_data(self):
        self.shape = [10, 15]
        self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
70 71
        self.x = np.random.uniform((-2), 3, self.shape).astype(np.float32)
        self.y = np.random.uniform((-2), 3, self.shape).astype(np.float32)
G
GaoWei8 已提交
72
        self.out = np.where(self.cond, self.x, self.y)
73

G
GaoWei8 已提交
74
    def ref_x_backward(self, dout):
75
        return np.where((self.cond == True), dout, 0)
G
GaoWei8 已提交
76 77

    def ref_y_backward(self, dout):
78
        return np.where((self.cond == False), dout, 0)
G
GaoWei8 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

    def test_api(self, use_cuda=False):
        for x_stop_gradient in [False, True]:
            for y_stop_gradient in [False, True]:
                with fluid.program_guard(Program(), Program()):
                    cond = fluid.layers.data(
                        name='cond', shape=self.shape, dtype='bool')
                    x = fluid.layers.data(
                        name='x', shape=self.shape, dtype='float32')
                    y = fluid.layers.data(
                        name='y', shape=self.shape, dtype='float32')
                    x.stop_gradient = x_stop_gradient
                    y.stop_gradient = y_stop_gradient
                    result = paddle.where(cond, x, y)
                    append_backward(layers.mean(result))
                    for use_cuda in [False, True]:
95 96
                        if (use_cuda and
                            (not fluid.core.is_compiled_with_cuda())):
G
GaoWei8 已提交
97
                            break
98 99
                        place = (fluid.CUDAPlace(0)
                                 if use_cuda else fluid.CPUPlace())
G
GaoWei8 已提交
100 101
                        exe = fluid.Executor(place)
                        fetch_list = [result, result.grad_name]
102
                        if (x_stop_gradient is False):
G
GaoWei8 已提交
103
                            fetch_list.append(x.grad_name)
104
                        if (y_stop_gradient is False):
G
GaoWei8 已提交
105 106 107 108 109 110 111 112
                            fetch_list.append(y.grad_name)
                        out = exe.run(
                            fluid.default_main_program(),
                            feed={'cond': self.cond,
                                  'x': self.x,
                                  'y': self.y},
                            fetch_list=fetch_list)
                        assert np.array_equal(out[0], self.out)
113
                        if (x_stop_gradient is False):
G
GaoWei8 已提交
114 115
                            assert np.array_equal(out[2],
                                                  self.ref_x_backward(out[1]))
116
                            if (y.stop_gradient is False):
G
GaoWei8 已提交
117 118
                                assert np.array_equal(
                                    out[3], self.ref_y_backward(out[1]))
119
                        elif (y.stop_gradient is False):
G
GaoWei8 已提交
120 121
                            assert np.array_equal(out[2],
                                                  self.ref_y_backward(out[1]))
122 123 124 125 126 127

    def test_api_broadcast(self, use_cuda=False):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
128 129 130 131
            x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype('float32')
            y_i = np.array(
                [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]).astype('float32')
            result = paddle.where((x > 1), x=x, y=y)
132
            for use_cuda in [False, True]:
133
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
134
                    return
135
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
136 137 138 139 140
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'x': x_i,
                                    'y': y_i},
                              fetch_list=[result])
141
                assert np.array_equal(out[0], np.where((x_i > 1), x_i, y_i))
142

R
ronnywang 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def test_scalar(self):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
            cond_shape = [2, 4]
            cond = fluid.layers.data(
                name='cond', shape=cond_shape, dtype='bool')
            x_data = 1.0
            y_data = 2.0
            cond_data = np.array([False, False, True, True]).astype('bool')
            result = paddle.where(condition=cond, x=x_data, y=y_data)
            for use_cuda in [False, True]:
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
                    return
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
                exe = fluid.Executor(place)
                out = exe.run(fluid.default_main_program(),
                              feed={'cond': cond_data},
                              fetch_list=[result])
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

165 166 167 168 169 170 171 172
    def __test_where_with_broadcast_static(self, cond_shape, x_shape, y_shape):
        paddle.enable_static()
        main_program = Program()
        with fluid.program_guard(main_program):
            cond = fluid.layers.data(
                name='cond', shape=cond_shape, dtype='bool')
            x = fluid.layers.data(name='x', shape=x_shape, dtype='float32')
            y = fluid.layers.data(name='y', shape=y_shape, dtype='float32')
173 174 175 176
            cond_data_tmp = np.random.random(size=cond_shape).astype('float32')
            cond_data = (cond_data_tmp < 0.3)
            x_data = np.random.random(size=x_shape).astype('float32')
            y_data = np.random.random(size=y_shape).astype('float32')
177 178
            result = paddle.where(condition=cond, x=x, y=y)
            for use_cuda in [False, True]:
179
                if (use_cuda and (not fluid.core.is_compiled_with_cuda())):
180
                    return
181
                place = (fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace())
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                exe = fluid.Executor(place)
                out = exe.run(
                    fluid.default_main_program(),
                    feed={'cond': cond_data,
                          'x': x_data,
                          'y': y_data},
                    fetch_list=[result])
                expect = np.where(cond_data, x_data, y_data)
                assert np.array_equal(out[0], expect)

    def test_static_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

    def test_static_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)

240 241 242 243

class TestWhereDygraphAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
244 245 246
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
247 248 249
            x = fluid.dygraph.to_variable(x_i)
            y = fluid.dygraph.to_variable(y_i)
            cond = fluid.dygraph.to_variable(cond_i)
G
GaoWei8 已提交
250
            out = paddle.where(cond, x, y)
251 252
            assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))

R
ronnywang 已提交
253 254 255 256 257 258 259 260 261
    def test_scalar(self):
        with fluid.dygraph.guard():
            cond_i = np.array([False, False, True, True]).astype('bool')
            x = 1.0
            y = 2.0
            cond = fluid.dygraph.to_variable(cond_i)
            out = paddle.where(cond, x, y)
            assert np.array_equal(out.numpy(), np.where(cond_i, x, y))

262 263 264
    def __test_where_with_broadcast_dygraph(self, cond_shape, a_shape, b_shape):
        with fluid.dygraph.guard():
            cond_tmp = paddle.rand(cond_shape)
265
            cond = (cond_tmp < 0.3)
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            a = paddle.rand(a_shape)
            b = paddle.rand(b_shape)
            result = paddle.where(cond, a, b)
            result = result.numpy()
            expect = np.where(cond, a, b)
            self.assertTrue(np.array_equal(expect, result))

    def test_dygraph_api_broadcast_1(self):
        cond_shape = [2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_2(self):
        cond_shape = [2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_3(self):
        cond_shape = [2, 2, 1]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_4(self):
        cond_shape = [2, 1, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_5(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 4]
        b_shape = [2, 2, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_6(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_7(self):
        cond_shape = [2, 2, 4]
        a_shape = [2, 1, 4]
        b_shape = [2, 1, 4]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

    def test_dygraph_api_broadcast_8(self):
        cond_shape = [3, 2, 2, 4]
        a_shape = [2, 2, 1]
        b_shape = [2, 2, 1]
        self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)

R
ronnywang 已提交
321 322 323
    def test_where_condition(self):
        data = np.array([[True, False], [False, True]])
        with program_guard(Program(), Program()):
324
            x = fluid.layers.data(name='x', shape=[(-1), 2])
R
ronnywang 已提交
325 326 327 328 329
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 2)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
330 331 332
            (res, ) = exe.run(feed={'x': data},
                              fetch_list=[z.name],
                              return_numpy=False)
R
ronnywang 已提交
333 334 335 336
        expect_out = np.array([[0, 0], [1, 1]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))
        data = np.array([True, True, False])
        with program_guard(Program(), Program()):
337
            x = fluid.layers.data(name='x', shape=[(-1)])
R
ronnywang 已提交
338 339 340 341 342
            y = paddle.where(x)
            self.assertEqual(type(y), tuple)
            self.assertEqual(len(y), 1)
            z = fluid.layers.concat(list(y), axis=1)
            exe = fluid.Executor(fluid.CPUPlace())
343 344 345
            (res, ) = exe.run(feed={'x': data},
                              fetch_list=[z.name],
                              return_numpy=False)
R
ronnywang 已提交
346 347 348
        expect_out = np.array([[0], [1]])
        self.assertTrue(np.allclose(expect_out, np.array(res)))

349 350 351 352 353 354 355 356 357 358 359 360
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_dygraph_api_broadcast_1()
            self.test_dygraph_api_broadcast_2()
            self.test_dygraph_api_broadcast_3()
            self.test_dygraph_api_broadcast_4()
            self.test_dygraph_api_broadcast_5()
            self.test_dygraph_api_broadcast_6()
            self.test_dygraph_api_broadcast_7()
            self.test_dygraph_api_broadcast_8()

361 362 363 364

class TestWhereOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
365 366 367
            x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float64')
            y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float64')
            cond_i = np.array([False, False, True, True]).astype('bool')
368 369

            def test_Variable():
G
GaoWei8 已提交
370
                paddle.where(cond_i, x_i, y_i)
371 372 373 374 375 376 377

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                x = fluid.layers.data(name='x', shape=[4], dtype='bool')
                y = fluid.layers.data(name='y', shape=[4], dtype='float16')
                cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
G
GaoWei8 已提交
378
                paddle.where(cond, x, y)
379 380 381

            self.assertRaises(TypeError, test_type)

R
ronnywang 已提交
382 383 384 385
    def test_value_error(self):
        with fluid.dygraph.guard():
            cond_shape = [2, 2, 4]
            cond_tmp = paddle.rand(cond_shape)
386
            cond = (cond_tmp < 0.3)
R
ronnywang 已提交
387 388 389
            a = paddle.rand(cond_shape)
            self.assertRaises(ValueError, paddle.where, cond, a)

390 391 392 393
    def test_eager(self):
        with _test_eager_guard():
            self.test_value_error()

394

H
hong 已提交
395 396
if __name__ == "__main__":
    paddle.enable_static()
397
    unittest.main()