test_matmul_v2_op.py 18.6 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19 20
from op_test import OpTest, convert_float_to_uint16, get_numeric_gradient
from paddle.fluid.tests.unittests.testsuite import create_op
S
ShenLiang 已提交
21 22 23 24 25
import paddle.fluid.core as core

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
26
from paddle.fluid.framework import _test_eager_guard
S
ShenLiang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, ))
        elif X.ndim == 2:
            X = X.T
        else:
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((Y.size, ))
        else:
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float64")
    return Out


class TestMatMulV2Op(OpTest):
    """
    case 1
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
70 71

    def init_kernel_type(self):
72
        self.dtype = "float32" if core.is_compiled_with_rocm() else "float64"
S
ShenLiang 已提交
73 74

    def setUp(self):
S
ShenLiang 已提交
75
        self.init_kernel_type()
S
ShenLiang 已提交
76 77
        self.config()
        self.op_type = "matmul_v2"
78 79 80 81 82 83 84 85 86
        if self.is_bfloat16_op():
            x = np.random.random(self.x_shape).astype(np.float32)
            y = np.random.random(self.y_shape).astype(np.float32)
        else:
            x = np.random.random(self.x_shape).astype(self.dtype)
            y = np.random.random(self.y_shape).astype(self.dtype)
            # -0.1 ~ 0.1
            x = -0.1 + 0.2 * x
            y = -0.1 + 0.2 * y
S
ShenLiang 已提交
87
        result = reference_matmul(x, y, self.trans_x, self.trans_y)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        if self.is_bfloat16_op():
            result = result.astype(np.float32)
            self.inputs = {
                'X': convert_float_to_uint16(x),
                'Y': convert_float_to_uint16(y),
            }
            self.inputs_fp32 = {
                'X': x,
                'Y': y,
            }
        else:
            result = result.astype(self.dtype)
            self.inputs = {
                'X': x,
                'Y': y,
            }
S
ShenLiang 已提交
104 105 106 107
        self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y}
        self.outputs = {'Out': result}

    def test_check_output(self):
108
        self.check_output(check_eager=False)
S
ShenLiang 已提交
109 110

    def test_check_grad(self):
111
        if core.is_compiled_with_rocm():
112
            self.check_grad(
113
                ['X', 'Y'], 'Out', max_relative_error=1e-2, check_eager=False)
114
        else:
115
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
S
ShenLiang 已提交
116 117


118
class TestMatMulOp2(TestMatMulV2Op):
S
ShenLiang 已提交
119 120 121 122 123 124 125 126 127 128 129
    """
    case 2
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 3, 2, 100)
        self.trans_x = False
        self.trans_y = True


130
class TestMatMulOp3(TestMatMulV2Op):
S
ShenLiang 已提交
131 132 133 134 135 136 137 138 139 140 141
    """
    case 3
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


142
class TestMatMulOp4(TestMatMulV2Op):
S
ShenLiang 已提交
143 144 145 146 147 148 149 150 151 152 153
    """
    case 4
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 2, 100, 2)
        self.trans_x = False
        self.trans_y = False


154
class TestMatMulOp5(TestMatMulV2Op):
S
ShenLiang 已提交
155 156 157 158 159
    """
    case 5
    """

    def config(self):
S
ShenLiang 已提交
160
        self.x_shape = (1, 1, 100, 1)
S
ShenLiang 已提交
161 162 163 164 165
        self.y_shape = (100, )
        self.trans_x = True
        self.trans_y = False


166
class TestMatMulOp6(TestMatMulV2Op):
S
ShenLiang 已提交
167 168 169 170 171
    """
    case 6
    """

    def config(self):
172 173
        self.x_shape = (1, 2, 102, 1)
        self.y_shape = (102, )
S
ShenLiang 已提交
174 175 176 177
        self.trans_x = True
        self.trans_y = False


178
class TestMatMulOp7(TestMatMulV2Op):
S
ShenLiang 已提交
179 180 181 182 183 184 185 186 187 188 189
    """
    case 7
    """

    def config(self):
        self.x_shape = (1, 2, 1, 100)
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False


190
class TestMatMulOp8(TestMatMulV2Op):
S
ShenLiang 已提交
191 192 193 194 195 196 197 198 199 200 201
    """
    case 8
    """

    def config(self):
        self.x_shape = (1, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


202
class TestMatMulOp9(TestMatMulV2Op):
S
ShenLiang 已提交
203 204 205 206 207 208 209 210 211 212 213
    """
    case 9
    """

    def config(self):
        self.x_shape = (1, 1, 1, 100)
        self.y_shape = (2, 1, 2, 100)
        self.trans_x = False
        self.trans_y = True


214
class TestMatMulOp10(TestMatMulV2Op):
S
ShenLiang 已提交
215 216 217 218 219
    """
    case 10
    """

    def config(self):
S
ShenLiang 已提交
220 221
        self.x_shape = (1, 1, 25, 4)
        self.y_shape = (1, 2, 4, 25)
S
ShenLiang 已提交
222 223 224 225
        self.trans_x = False
        self.trans_y = False


226
class TestMatMulOp11(TestMatMulV2Op):
S
ShenLiang 已提交
227 228 229 230 231 232 233 234 235 236 237
    """
    case 11
    """

    def config(self):
        self.x_shape = (2, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


238
class TestMatMulOp12(TestMatMulV2Op):
S
ShenLiang 已提交
239 240 241 242 243
    """
    case 12
    """

    def config(self):
S
ShenLiang 已提交
244 245
        self.x_shape = (2, 1, 4, 25)
        self.y_shape = (1, 1, 4, 25)
S
ShenLiang 已提交
246 247 248 249
        self.trans_x = True
        self.trans_y = False


250
class TestMatMulOp13(TestMatMulV2Op):
S
ShenLiang 已提交
251 252 253 254 255
    """
    case 13
    """

    def config(self):
S
ShenLiang 已提交
256 257
        self.x_shape = (2, 2, 10, 10)
        self.y_shape = (2, 2, 10, 10)
S
ShenLiang 已提交
258 259 260 261
        self.trans_x = True
        self.trans_y = False


262
class TestMatMulOp14(TestMatMulV2Op):
S
ShenLiang 已提交
263 264 265 266 267
    """
    case 14_1
    """

    def config(self):
268 269
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
270 271 272 273
        self.trans_x = True
        self.trans_y = False


274
class TestMatMulOp15(TestMatMulV2Op):
S
ShenLiang 已提交
275 276 277 278 279
    """
    case 14_2
    """

    def config(self):
280 281
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
282 283 284 285
        self.trans_x = False
        self.trans_y = False


286
class TestMatMulOp16(TestMatMulV2Op):
S
ShenLiang 已提交
287 288 289 290 291 292
    """
    case 16 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (100)
S
ShenLiang 已提交
293
        self.y_shape = (1, 2, 2, 100, 2)
S
ShenLiang 已提交
294 295 296 297
        self.trans_x = False
        self.trans_y = False


298
class TestMatMulOp17(TestMatMulV2Op):
S
ShenLiang 已提交
299 300 301 302 303 304 305 306 307
    """
    case 17 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (2, 1, 100)
        self.y_shape = (100)
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
308 309


310
class TestMatMulOpBroadcast1(TestMatMulV2Op):
311 312 313 314 315 316 317 318 319 320 321
    """
    case 14_3
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = True
        self.trans_y = True


322
class TestMatMulOpBroadcast2(TestMatMulV2Op):
323 324 325 326 327 328 329 330 331 332 333
    """
    case 14_4
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = False
        self.trans_y = True


S
ShenLiang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347
#--------------------test matmul fp16--------------------


def create_test_fp16_class(parent, atol=0.001, max_relative_error=1.0):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestMatMulOpFp16Case(parent):
        def init_kernel_type(self):
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
348
                    self.check_output_with_place(
349
                        place, atol=atol, check_eager=False)
S
ShenLiang 已提交
350 351 352 353 354 355 356

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_grad_with_place(
                    place, ['X', 'Y'],
                    'Out',
357
                    max_relative_error=max_relative_error,
358
                    check_eager=False)
S
ShenLiang 已提交
359 360 361 362 363 364 365

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestMatMulOpFp16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpFp16Case


create_test_fp16_class(TestMatMulV2Op)
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
create_test_fp16_class(TestMatMulOp2)
create_test_fp16_class(TestMatMulOp3)
create_test_fp16_class(TestMatMulOp4)
create_test_fp16_class(TestMatMulOp5)
create_test_fp16_class(TestMatMulOp6)
create_test_fp16_class(TestMatMulOp7)
create_test_fp16_class(TestMatMulOp8)
create_test_fp16_class(TestMatMulOp9)
create_test_fp16_class(TestMatMulOp10)
create_test_fp16_class(TestMatMulOp11)
create_test_fp16_class(TestMatMulOp12)
create_test_fp16_class(TestMatMulOp13)
create_test_fp16_class(TestMatMulOp14)
create_test_fp16_class(TestMatMulOp15)
create_test_fp16_class(TestMatMulOp16)
create_test_fp16_class(TestMatMulOp17)

#--------------------test matmul bf16--------------------


def create_test_bf16_class(parent, atol=0.01):
    @unittest.skipIf(
        not core.is_compiled_with_cuda() or core.cudnn_version() < 8100,
        "core is not compiled with CUDA and cudnn version need larger than 8.1.0"
    )
    class TestMatMulOpBf16Case(parent):
        def get_numeric_grad(self, place, check_name):
            scope = core.Scope()
            self._check_grad_helper()
            op = create_op(scope, self.op_type, self.inputs, self.outputs,
                           self.attrs)
            return get_numeric_gradient(place, scope, op, self.inputs_fp32,
                                        check_name, ['Out'])

        def init_kernel_type(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad_x(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'X')
            self.check_grad_with_place(
                place, ['X'],
                'Out',
                no_grad_set=set(['Y']),
                user_defined_grads=[numeric_grads])

        def test_check_grad_y(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Y')
            self.check_grad_with_place(
                place, ['Y'],
                'Out',
                no_grad_set=set(['X']),
                user_defined_grads=[numeric_grads])

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestMatMulOpBf16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpBf16Case


create_test_bf16_class(TestMatMulV2Op)
create_test_bf16_class(TestMatMulOp2)
create_test_bf16_class(TestMatMulOp3)
create_test_bf16_class(TestMatMulOp4)
create_test_bf16_class(TestMatMulOp5)
create_test_bf16_class(TestMatMulOp6)
create_test_bf16_class(TestMatMulOp7)
create_test_bf16_class(TestMatMulOp8)
create_test_bf16_class(TestMatMulOp9)
create_test_bf16_class(TestMatMulOp10)
create_test_bf16_class(TestMatMulOp11)
create_test_bf16_class(TestMatMulOp12)
create_test_bf16_class(TestMatMulOp13)
create_test_bf16_class(TestMatMulOp14)
create_test_bf16_class(TestMatMulOp15)
create_test_bf16_class(TestMatMulOp16)
create_test_bf16_class(TestMatMulOp17)
S
ShenLiang 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486


class TestMatMulV2API(unittest.TestCase):
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = fluid.data(name="input_x", shape=[4, 3], dtype="float32")
            input_y = fluid.data(name="input_y", shape=[3, 4], dtype="float32")

            result = paddle.matmul(input_x, input_y)

            x_np = np.random.random([4, 3]).astype("float32")
            y_np = np.random.random([3, 4]).astype("float32")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input_x": x_np,
                                    "input_y": y_np},
                              fetch_list=[result])

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_x = np.random.random([4, 3]).astype("float64")
                input_y = np.random.random([3, 4]).astype("float64")
                x = paddle.to_tensor(input_x)
                y = paddle.to_tensor(input_y)
                result = paddle.matmul(x, y)

S
ShenLiang 已提交
487 488 489 490 491 492 493 494 495 496 497
    def test_dygraph_fp16(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
                    input_x = np.random.random([4, 3]).astype("float16")
                    input_y = np.random.random([3, 4]).astype("float16")
                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)

498 499 500 501 502
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph()
            self.test_dygraph_fp16()

S
ShenLiang 已提交
503

C
chentianyu03 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
class TestComplexMatMulOp(OpTest):
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)

    def test_check_output(self):
537
        self.check_output(check_eager=False)
C
chentianyu03 已提交
538 539 540 541 542 543

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
544
            user_defined_grad_outputs=[self.grad_out],
545
            check_eager=False)
C
chentianyu03 已提交
546 547 548 549 550 551 552

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
553
            user_defined_grad_outputs=[self.grad_out],
554
            check_eager=False)
C
chentianyu03 已提交
555 556 557 558 559 560 561

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
562
            user_defined_grad_outputs=[self.grad_out],
563
            check_eager=False)
C
chentianyu03 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600


class TestComplexMatMulOpBroadcast(OpTest):
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 2, 5)).astype(self.dtype) + 1J * np.random.random(
                (10, 2, 5)).astype(self.dtype)
        self.y = np.random.random(
            (5, 20)).astype(self.dtype) + 1J * np.random.random(
                (5, 20)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 2, 20), self.dtype) + 1J * np.ones(
            (10, 2, 20), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.sum(np.matmul(
            np.conj(self.x).transpose(0, 2, 1), self.grad_out),
                             axis=0)

    def test_check_output(self):
601
        self.check_output(check_eager=False)
C
chentianyu03 已提交
602 603 604 605 606 607

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
608
            user_defined_grad_outputs=[self.grad_out],
609
            check_eager=False)
C
chentianyu03 已提交
610 611 612 613 614 615 616

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
617
            user_defined_grad_outputs=[self.grad_out],
618
            check_eager=False)
C
chentianyu03 已提交
619 620 621 622 623 624 625

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
626
            user_defined_grad_outputs=[self.grad_out],
627
            check_eager=False)
C
chentianyu03 已提交
628 629


C
chentianyu03 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
class TestMatMulTypePromotion(TestComplexMatMulOp):
    def init_input_output(self):
        self.x = np.random.random((10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T).real
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)


S
ShenLiang 已提交
645
if __name__ == "__main__":
C
chentianyu03 已提交
646
    paddle.enable_static()
S
ShenLiang 已提交
647
    unittest.main()