test_matmul_v2_op.py 15.1 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, ))
        elif X.ndim == 2:
            X = X.T
        else:
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((Y.size, ))
        else:
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float64")
    return Out


class TestMatMulV2Op(OpTest):
    """
    case 1
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
68 69

    def init_kernel_type(self):
70
        self.dtype = "float32" if core.is_compiled_with_rocm() else "float64"
S
ShenLiang 已提交
71 72

    def setUp(self):
S
ShenLiang 已提交
73
        self.init_kernel_type()
S
ShenLiang 已提交
74 75 76 77
        self.config()
        self.op_type = "matmul_v2"
        x = np.random.random(self.x_shape).astype(self.dtype)
        y = np.random.random(self.y_shape).astype(self.dtype)
S
ShenLiang 已提交
78 79 80
        # -0.1 ~ 0.1
        x = -0.1 + 0.2 * x
        y = -0.1 + 0.2 * y
S
ShenLiang 已提交
81
        result = reference_matmul(x, y, self.trans_x, self.trans_y)
S
ShenLiang 已提交
82
        result = result.astype(self.dtype)
S
ShenLiang 已提交
83 84 85 86 87 88 89 90 91 92 93
        self.inputs = {
            'X': x,
            'Y': y,
        }
        self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y}
        self.outputs = {'Out': result}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
94 95 96 97
        if core.is_compiled_with_rocm():
            self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-2)
        else:
            self.check_grad(['X', 'Y'], 'Out')
S
ShenLiang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141


class TestMatMuklOp2(TestMatMulV2Op):
    """
    case 2
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 3, 2, 100)
        self.trans_x = False
        self.trans_y = True


class TestMatMuklOp3(TestMatMulV2Op):
    """
    case 3
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


class TestMatMuklOp4(TestMatMulV2Op):
    """
    case 4
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 2, 100, 2)
        self.trans_x = False
        self.trans_y = False


class TestMatMuklOp5(TestMatMulV2Op):
    """
    case 5
    """

    def config(self):
S
ShenLiang 已提交
142
        self.x_shape = (1, 1, 100, 1)
S
ShenLiang 已提交
143 144 145 146 147 148 149 150 151 152 153
        self.y_shape = (100, )
        self.trans_x = True
        self.trans_y = False


class TestMatMuklOp6(TestMatMulV2Op):
    """
    case 6
    """

    def config(self):
154 155
        self.x_shape = (1, 2, 102, 1)
        self.y_shape = (102, )
S
ShenLiang 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        self.trans_x = True
        self.trans_y = False


class TestMatMuklOp7(TestMatMulV2Op):
    """
    case 7
    """

    def config(self):
        self.x_shape = (1, 2, 1, 100)
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False


class TestMatMuklOp8(TestMatMulV2Op):
    """
    case 8
    """

    def config(self):
        self.x_shape = (1, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


class TestMatMuklOp9(TestMatMulV2Op):
    """
    case 9
    """

    def config(self):
        self.x_shape = (1, 1, 1, 100)
        self.y_shape = (2, 1, 2, 100)
        self.trans_x = False
        self.trans_y = True


class TestMatMuklOp10(TestMatMulV2Op):
    """
    case 10
    """

    def config(self):
S
ShenLiang 已提交
202 203
        self.x_shape = (1, 1, 25, 4)
        self.y_shape = (1, 2, 4, 25)
S
ShenLiang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        self.trans_x = False
        self.trans_y = False


class TestMatMuklOp11(TestMatMulV2Op):
    """
    case 11
    """

    def config(self):
        self.x_shape = (2, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


class TestMatMuklOp12(TestMatMulV2Op):
    """
    case 12
    """

    def config(self):
S
ShenLiang 已提交
226 227
        self.x_shape = (2, 1, 4, 25)
        self.y_shape = (1, 1, 4, 25)
S
ShenLiang 已提交
228 229 230 231 232 233 234 235 236 237
        self.trans_x = True
        self.trans_y = False


class TestMatMuklOp13(TestMatMulV2Op):
    """
    case 13
    """

    def config(self):
S
ShenLiang 已提交
238 239
        self.x_shape = (2, 2, 10, 10)
        self.y_shape = (2, 2, 10, 10)
S
ShenLiang 已提交
240 241 242 243 244 245 246 247 248 249
        self.trans_x = True
        self.trans_y = False


class TestMatMuklOp14(TestMatMulV2Op):
    """
    case 14_1
    """

    def config(self):
250 251
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
252 253 254 255 256 257 258 259 260 261
        self.trans_x = True
        self.trans_y = False


class TestMatMuklOp15(TestMatMulV2Op):
    """
    case 14_2
    """

    def config(self):
262 263
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
264 265 266 267 268 269 270 271 272 273 274
        self.trans_x = False
        self.trans_y = False


class TestMatMuklOp16(TestMatMulV2Op):
    """
    case 16 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (100)
S
ShenLiang 已提交
275
        self.y_shape = (1, 2, 2, 100, 2)
S
ShenLiang 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289
        self.trans_x = False
        self.trans_y = False


class TestMatMuklOp17(TestMatMulV2Op):
    """
    case 17 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (2, 1, 100)
        self.y_shape = (100)
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
290 291


292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
class TestMatMuklOpBroadcast1(TestMatMulV2Op):
    """
    case 14_3
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = True
        self.trans_y = True


class TestMatMuklOpBroadcast2(TestMatMulV2Op):
    """
    case 14_4
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = False
        self.trans_y = True


S
ShenLiang 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
#--------------------test matmul fp16--------------------


def create_test_fp16_class(parent, atol=0.001, max_relative_error=1.0):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestMatMulOpFp16Case(parent):
        def init_kernel_type(self):
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_grad_with_place(
                    place, ['X', 'Y'],
                    'Out',
                    max_relative_error=max_relative_error)

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestMatMulOpFp16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpFp16Case


create_test_fp16_class(TestMatMulV2Op)
create_test_fp16_class(TestMatMuklOp2)
create_test_fp16_class(TestMatMuklOp3)
create_test_fp16_class(TestMatMuklOp4)
create_test_fp16_class(TestMatMuklOp5)
create_test_fp16_class(TestMatMuklOp6)
create_test_fp16_class(TestMatMuklOp7)
create_test_fp16_class(TestMatMuklOp8)
create_test_fp16_class(TestMatMuklOp9)
create_test_fp16_class(TestMatMuklOp10)
create_test_fp16_class(TestMatMuklOp11)
create_test_fp16_class(TestMatMuklOp12)
create_test_fp16_class(TestMatMuklOp13)
create_test_fp16_class(TestMatMuklOp14)
create_test_fp16_class(TestMatMuklOp15)
create_test_fp16_class(TestMatMuklOp16)
create_test_fp16_class(TestMatMuklOp17)
S
ShenLiang 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398


class TestMatMulV2API(unittest.TestCase):
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = fluid.data(name="input_x", shape=[4, 3], dtype="float32")
            input_y = fluid.data(name="input_y", shape=[3, 4], dtype="float32")

            result = paddle.matmul(input_x, input_y)

            x_np = np.random.random([4, 3]).astype("float32")
            y_np = np.random.random([3, 4]).astype("float32")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input_x": x_np,
                                    "input_y": y_np},
                              fetch_list=[result])

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_x = np.random.random([4, 3]).astype("float64")
                input_y = np.random.random([3, 4]).astype("float64")
                x = paddle.to_tensor(input_x)
                y = paddle.to_tensor(input_y)
                result = paddle.matmul(x, y)

S
ShenLiang 已提交
399 400 401 402 403 404 405 406 407 408 409
    def test_dygraph_fp16(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
                    input_x = np.random.random([4, 3]).astype("float16")
                    input_y = np.random.random([3, 4]).astype("float16")
                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)

S
ShenLiang 已提交
410

C
chentianyu03 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
class TestComplexMatMulOp(OpTest):
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


class TestComplexMatMulOpBroadcast(OpTest):
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 2, 5)).astype(self.dtype) + 1J * np.random.random(
                (10, 2, 5)).astype(self.dtype)
        self.y = np.random.random(
            (5, 20)).astype(self.dtype) + 1J * np.random.random(
                (5, 20)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 2, 20), self.dtype) + 1J * np.ones(
            (10, 2, 20), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.sum(np.matmul(
            np.conj(self.x).transpose(0, 2, 1), self.grad_out),
                             axis=0)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


C
chentianyu03 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
class TestMatMulTypePromotion(TestComplexMatMulOp):
    def init_input_output(self):
        self.x = np.random.random((10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T).real
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)


S
ShenLiang 已提交
546
if __name__ == "__main__":
C
chentianyu03 已提交
547
    paddle.enable_static()
S
ShenLiang 已提交
548
    unittest.main()