qr_op.h 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <Eigen/Dense>
#include <cstdarg>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/operators/svd_helper.h"
22
#include "paddle/fluid/platform/for_range.h"
23
#include "paddle/phi/kernels/funcs/complex_functors.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;

static inline std::tuple<bool, bool> _parse_qr_mode(std::string mode) {
  bool compute_q;
  bool reduced;
  if (mode == "reduced") {
    compute_q = true;
    reduced = true;
  } else if (mode == "complete") {
    compute_q = true;
    reduced = false;
  } else if (mode == "r") {
    compute_q = false;
    reduced = true;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "QR received unrecognized mode '%s'"
        " but expected one of 'reduced' (default), 'r', or 'complete'",
        mode));
  }
  return std::make_tuple(compute_q, reduced);
}

template <typename DeviceContext, typename T>
class QrGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
55 56 57 58 59 60 61 62 63 64 65
    const framework::Tensor& Q = *ctx.Input<framework::Tensor>("Q");
    const framework::Tensor& R = *ctx.Input<framework::Tensor>("R");
    // Use a different name A instead of X
    const framework::Tensor& A = *ctx.Input<framework::Tensor>("X");
    const framework::Tensor& dQ =
        *ctx.Input<framework::Tensor>(framework::GradVarName("Q"));
    const framework::Tensor& dR =
        *ctx.Input<framework::Tensor>(framework::GradVarName("R"));
    // Use a different name dA instead of dX
    framework::Tensor& dA =
        *ctx.Output<framework::Tensor>(framework::GradVarName("X"));
66
    dA.mutable_data<phi::dtype::Real<T>>(ctx.GetPlace());
67
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
68
    phi::funcs::SetConstant<DeviceContext, T>()(dev_ctx, &dA, T(0));
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

    auto dito = math::DeviceIndependenceTensorOperations<DeviceContext, T>(ctx);

    std::string mode = ctx.Attr<std::string>("mode");
    bool compute_q, reduced;
    std::tie(compute_q, reduced) = _parse_qr_mode(mode);
    if (!compute_q) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The derivative of qr is not implemented when mode='r'."));
    }

    auto a_dims = A.dims();
    int a_rank = a_dims.size();
    int m = a_dims[a_rank - 2];
    int n = a_dims[a_rank - 1];

    if ((m > n) && (!reduced)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The derivative of qr is not implemented when mode='complete' and "
          "nrows > ncols."));
    }

    // m >= n case
    auto m_gt_n_case = [](
        const framework::ExecutionContext& ctx,
        math::DeviceIndependenceTensorOperations<DeviceContext, T>& dito,
        const Tensor& dQ, const Tensor& dR, const Tensor& A, const Tensor& Q,
        const Tensor& R) -> framework::Tensor {
      // Hai-Jun Liao, Jin-Guo Liu, Lei Wang, Tao Xiang (2019). Differentiable
      // Programming Tensor Networks.
      // https://arxiv.org/abs/1903.09650 Section 3. QR factorization

      // dR^H
      framework::Tensor R_term;
      if (ctx.HasInput(framework::GradVarName("R"))) {
        R_term = dito.Matmul(R, dito.Transpose(dR));
      } else {
106
        R_term = dito.Fill(phi::vectorize<int>(R.dims()), 0);
107 108 109 110 111 112 113
      }

      // dQ^H * Q
      framework::Tensor Q_term;
      if (ctx.HasInput(framework::GradVarName("Q"))) {
        Q_term = dito.Matmul(dito.Transpose(dQ), Q);
      } else {
114
        Q_term = dito.Fill(phi::vectorize<int>(R.dims()), 0);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
      }

      framework::Tensor M_tmp1 = dito.Sub(R_term, Q_term);

      // Compute M = (tril(M) + tril(M).mH()) * 0.5 Identity
      framework::Tensor M_tril_0 = dito.TrilTriu(M_tmp1, 0, true);
      framework::Tensor M_tril_1 = dito.TrilTriu(M_tmp1, -1, true);
      framework::Tensor M = dito.Add(M_tril_0, dito.Transpose(M_tril_1));

      framework::Tensor rhs_term;
      if (ctx.HasInput(framework::GradVarName("Q"))) {
        rhs_term = dito.Add(dQ, dito.Matmul(Q, M));
      } else {
        rhs_term = dito.Matmul(Q, M);
      }

      // dA * R^H = rhs_term
      auto dA =
          dito.TriangularSolve(dito.Transpose(dito.Conj(dito.Transpose(R))),
                               dito.Transpose(rhs_term),
                               /*upper=*/true,
                               /*transpose=*/false,
                               /*unitriangular=*/false);

      return dito.Transpose(dA);
    };

    if (m >= n) {
      auto dA_tmp = m_gt_n_case(ctx, dito, dQ, dR, A, Q, R);
      framework::TensorCopy(dA_tmp, dA.place(), &dA);
    } else {
      // If m < n for input matrices A, we partition A = [X|Y] and R = [U|V]
      // Calculate dX and dY individually and concatenate them to get dA
148
      dA.mutable_data<phi::dtype::Real<T>>(ctx.GetPlace());
149 150 151 152 153 154 155 156 157 158 159

      auto Y = dito.Slice(A, {-1}, {m}, {n});
      auto U = dito.Slice(R, {-1}, {0}, {m});
      framework::Tensor dY, dX, dV, dR_tmp, dQ_prime;

      if (ctx.HasInput(framework::GradVarName("R"))) {
        dV = dito.Slice(dR, {-1}, {m}, {n});
        dR_tmp = dito.Slice(dR, {-1}, {0}, {m});
        // Y * dV^H
        dQ_prime = dito.Matmul(Y, dito.Transpose(dV));
      } else {
160 161
        dV = dito.Fill(phi::vectorize<int>(Y.dims()), 0);
        dQ_prime = dito.Fill(phi::vectorize<int>(Q.dims()), 0);
162 163 164 165 166 167 168 169 170 171 172
      }

      if (ctx.HasInput(framework::GradVarName("Q"))) {
        dQ_prime = dito.Add(dQ_prime, dQ);
      }
      dX = m_gt_n_case(ctx, dito, dQ_prime, dR_tmp, A, Q, U);
      dY = dito.Matmul(Q, dV);
      // Concatenate dX and dY to get dA.
      auto dA_tmp = dito.ConcatTwoTensors(dX, dY, -1);
      framework::TensorCopy(dA_tmp, dA.place(), &dA);
    }
173 174 175
  }
};

176 177 178 179 180 181 182 183
template <typename DeviceContext, typename T>
void BatchedGeqrf(const DeviceContext& dev_ctx, int batch_size, int m, int n,
                  T* a, int lda, T* tau, int a_stride, int tau_stride);

template <typename DeviceContext, typename T>
void BatchedOrgqr(const DeviceContext& dev_ctx, int batch_size, int m, int n,
                  int k, T* a, int lda, T* tau, int a_stride, int tau_stride);

184 185
}  // namespace operators
}  // namespace paddle